

In Search of the Computational Primitives of Language

Aniello De Santo he/him

MeLo Lab
Dept. of Linguistics

aniellodesanto.github.io aniello.desanto@utah.edu

Computation and Theory Building

[...] this is a confusion of two quite separate issues, simulation and explanation. [...] What we are really interested in [...] is explanation — in developing models that help us understand how it is that people behave that way, not merely demonstrating that we can build an artifact that behaves similarly.

(Kaplan, 1995)

Computation and Theory Building

[...] this is a confusion of two quite separate issues, simulation and explanation. [...] What we are really interested in [...] is explanation — in developing models that help us understand how it is that people behave that way, not merely demonstrating that we can build an artifact that behaves similarly.

(Kaplan, 1995)

Interpretability for the win!

A Lens: Formal Language Theory

Spoken Languages' Phonology as a Regular System

Local Phonotactic Dependencies

Intervocalic voicing in Italian

Forbid voiceless segments in between two vowels

(1) a. */kasa/ b. /kaza/ \rightarrow cf. orthography: "casa"

Intervocalic voicing is Strictly Local (SL)

- ► Forbid voiceless segments in-between two vowels: *V[-voice]V
- ltalian: *ase, *ise, *ese, *isi, ...
 - **\$** k a **s** a **\$**
- \$ k a z a \$

Local Phonotactic Dependencies

Intervocalic voicing in Italian

Forbid voiceless segments in between two vowels

```
(1) a. */kasa/
b. /kaza/
\rightarrow cf. orthography: "casa"
```

Intervocalic voicing is Strictly Local (SL)

- ► Forbid voiceless segments in-between two vowels: *V[-voice]V
- Italian: *ase, *ise, *ese, *isi, ...
 - **\$** k a **s** a **\$**

\$ k a z a \$

Local Phonotactic Dependencies

Intervocalic voicing in Italian

Forbid voiceless segments in between two vowels

(1) a. */kasa/
b. /kaza/
$$\rightarrow$$
 cf. orthography: "casa"

Intervocalic voicing is Strictly Local (SL)

- ► Forbid voiceless segments in-between two vowels: *V[-voice]V
- ► Italian: *ase, *ise, *ese, *isi, ...
 - * **\$** k a **s** a **\$**

Beyond Automata: Subregular Languages¹

¹McNaughton & Papert (1976), Heinz (2011), Chandlee & Heinz (2014), De Santo & Graf (2019), De Santo & Rawski (2022), a.o.

FLT, Linguistics, and LLM Expressivity

Saturated Transformers are Constant-Depth Threshold Circuits

William Merrill* † Ashish Sabharwal * Noah A. Smith* †
* Allen Institute for Al † New York University † University of Washington
[ashishs.noah]@allenai.org

Between Circuits and Chomsky: Pre-pretraining on Formal Languages Imparts Linguistic Biases

1 re-pretraining on Formai Languages Imparts Linguistic Diase

Michael Y. Hu¹ Jackson Petty² Chuan Shi¹ William Merrill¹

Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval

Tal Linzen^{1,2}

Uri Alon ¹ Frank F. Xu ¹ Junxian He ¹ Sudipta Sengupta ² Jan Roth ³ Graham Neubig ¹ ³ Amguage Technologies Institute, Camegie Mellon University ³ Amazon AWS Al Labs ⁴ (ual.on, fangzhex, junxkanh, gneubig J (6 s. cmu. edu ⁴ sudipta, drot) § amazon .com ⁴ (sudipta, drot) § amazon .com

What Makes Instruction Learning Hard? An Investigation and a New Challenge in a Synthetic Environment

Matthew Finlayson Kyle Richardson Ashish Sabharwal Peter Clark
Allen Institute for AI, Seattle, WA

{matthewf, kyler, ashishs, peterc}@allenai.org

Not All Structures Are Processed Equally

Subject VS object relative clause

SRC The horse [$_{RC}$ that kicked the wolf] went home.

ORC The horse [$_{RC}$ that the wolf kicked] went home.

Not All Structures Are Processed Equally

Subject VS object relative clause

```
SRC The horse [_{RC} that kicked the wolf ] went home. ORC The horse [_{RC} that the wolf kicked] went home.
```

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen^{1,2} Emmanuel Dupoux¹
LSCP¹ & IJN², CNRS,
EHESS and ENS, PSL Research University
{tal.linzen,
emmanuel.dupoux}@ens.fr

Yoav Goldberg
Computer Science Department
Bar Ilan University
yoav.goldberg@gmail.com

Not All Structures Are Processed Equally

- Subject VS object relative clause SRC The horse [RC that t kicked the wolf] went home. ORC The horse [RC that the wolf kicked t] went home.
- Attachment preferences
 - 1.a I shot an elephant in my pajamas
 - 1.b | [shot an elephant] [in my pajamas

Not All Structures Are Processed Equally

- Subject VS object relative clause
 - SRC The horse [$_{RC}$ that t kicked the wolf] went home.
 - ORC The horse $[_{RC}$ that the wolf kicked t] went home.
- Attachment preferences
 - 1.a I shot [an elephant in my pajamas]
 - 1.b | [shot an elephant] [in my pajamas]

Ambiguity All the Way Down

So What?

Ambiguity is ubiquitous in natural language!

For Cognitive Science

- How do humans handle multiple structural representations?
- What principles guide ambiguity resolution cross-linguistically?
- Language specific properties vs. general biases/mechanisms?

For NLP

- ► How do LLMs handle multiple structural representations?
- What principles guide ambiguity resolution cross-linguistically?
- Language specific properties vs. general biases/mechanisms?

So What?

Ambiguity is ubiquitous in natural language!

For Cognitive Science

- How do humans handle multiple structural representations?
- What principles guide ambiguity resolution cross-linguistically?
- Language specific properties vs. general biases/mechanisms?

For NLP

- How do LLMs handle multiple structural representations?
- What principles guide ambiguity resolution cross-linguistically?
- Language specific properties vs. general biases/mechanisms?

Ambiguity and Relative Clauses Cross-linguistically ²

²Grillo & Costa (2015,) De Santo & Lee (2023), Lee & De Santo (2024)

Ambiguity and Relative Clauses Cross-linguistically ²

They saw the daughter of the actress that was on the balcony
 NP₁ The daughter was on the balcony
 HA
 NP₂ The actress was on the balcony

²Grillo & Costa (2015,) De Santo & Lee (2023), Lee & De Santo (2024)

Ambiguity and Relative Clauses Cross-linguistically ²

They saw the daughter of the actress that was on the balcony
 NP₁ The daughter was on the balcony
 HA
 NP₂ The actress was on the balcony

²Grillo & Costa (2015,) De Santo & Lee (2023), Lee & De Santo (2024)

Let's chat!

- Samala Sibilant Harmony Sibilants must not disagree in anteriority.
 (?)
 - (2) a. * hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

```
*$hasxintilawaʃ$
```

\$ha∫xintilawa∫\$

- Samala Sibilant Harmony Sibilants must not disagree in anteriority.
 (?)
 - (2) a. * hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

```
*$hasxintilawaʃ$
```

\$ha∫xintilawa∫\$

- Samala Sibilant Harmony Sibilants must not disagree in anteriority.
 (?)
 - (2) a. * hasxintilawaſ
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

```
*$ha<mark>s</mark>xintilawa∫$
```

\$ha∫xintilawa∫\$

- Samala Sibilant Harmony Sibilants must not disagree in anteriority.
 (?)
 - (2) a. * hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

```
*$ ha<mark>s</mark> xintila wa∫$
$ ha∫ xintila wa∫$
```

- Samala Sibilant Harmony Sibilants must not disagree in anteriority.
 (?)
 - (2) a. * hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

▶ But: Sibilants can be arbitrarily far away from each other!

*\$**s**tajanowonwa∫\$

- Samala Sibilant Harmony
 Sibilants must not disagree in anteriority.
 (?)
 - (2) a. *hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫

Example: Samala

▶ But: Sibilants can be arbitrarily far away from each other!

Unbounded Dependencies are TSL

- Let's revisit Samala Sibilant Harmony
 - (3) a. * hasxintilawa
 - b. * ha∫xintilawas
 - c. haʃxintilawaʃ
- ▶ What do we need to project? [+strident]
- What do we need to ban? *[+ant][-ant],*[-ant][+ant]
 I.E. *s∫, *s₃, *z∫, *z₃, *∫s, *₃s, *∫z, *₃z

Unbounded Dependencies are TSL

- Let's revisit Samala Sibilant Harmony
 - (3) a. * hasxintilawa
 - b. * ha∫xintilawas
 - c. haʃxintilawaʃ
- ▶ What do we need to project? [+strident]
- What do we need to ban? *[+ant][-ant],*[-ant][+ant]
 I.E. *s∫, *s₃, *z∫, *z₃, *∫s, *₃s, *∫z, *₃z