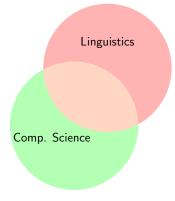
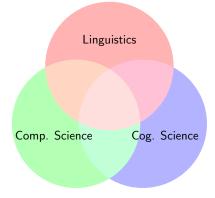
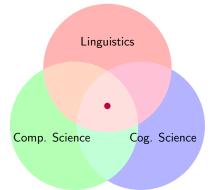
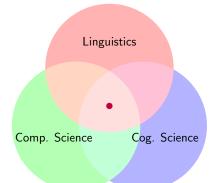


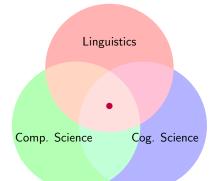
MG Parsing as a Window into Human Sentence Processing


Aniello De Santo

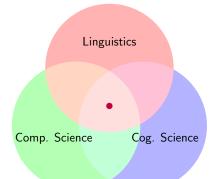

aniellodesanto.github.io aniello.desanto@stonybrook.edu


> UCLA Feb 14, 2020





- Modeling processing difficulty (De Santo 2019; De Santo in prep.)
- Contrasting syntactic analyses (De Santo & Shafiei 2019)
- Gradience in acceptability judgments (De Santo 2020)
- Memory & generalized quantifiers (De Santo & Drury 2019, a.o)
- Subregularity of syntactic constraints (Graf & De Santo 2020)
- Subregular parallels across linguistic modules (Aksënova & De Santo 2017; De Santo & Graf 2019)
- Learnability (McMullin, Aksënova, De Santo 2018; De Santo 2018)
- Animal cognition (De Santo & Rawski 2020)


- Modeling processing difficulty (De Santo 2019; De Santo in prep.)
- Contrasting syntactic analyses (De Santo & Shafiei 2019)
- Gradience in acceptability judgments (De Santo 2020)
- Memory & generalized quantifiers (De Santo & Drury 2019, a.o)
- Subregularity of syntactic constraints (Graf & De Santo 2020)
- Subregular parallels across linguistic modules (Aksënova & De Santo 2017; De Santo & Graf 2019)
- Learnability (McMullin, Aksënova, De Santo 2018; De Santo 2018)
- Animal cognition (De Santo & Rawski 2020)

Processing

- Modeling processing difficulty (De Santo 2019; De Santo in prep.)
- Contrasting syntactic analyses (De Santo & Shafiei 2019)
- Gradience in acceptability judgments (De Santo 2020)
- Memory & generalized quantifiers (De Santo & Drury 2019, a.o)
- Subregularity of syntactic constraints (Graf & De Santo 2020)
- Subregular parallels across linguistic modules (Aksënova & De Santo 2017; De Santo & Graf 2019)
- Learnability (McMullin, Aksënova, De Santo 2018; De Santo 2018)
- Animal cognition (De Santo & Rawski 2020)

Processing

- Modeling processing difficulty (De Santo 2019; De Santo in prep.)
- Contrasting syntactic analyses (De Santo & Shafiei 2019)
- Gradience in acceptability judgments (De Santo 2020)
 - Memory & generalized quantifiers (De Santo & Drury 2019, a.o)
- Subregularity of syntactic constraints (Graf & De Santo 2020)
- Subregular parallels across linguistic modules (Aksënova & De Santo 2017; De Santo & Graf 2019)
- Learnability (McMullin, Aksënova, De Santo 2018; De Santo 2018)
- Animal cognition (De Santo & Rawski 2020)

Processing

SRC

ORC

Let's Start with Data!

Asymmetries in Italian Relative Clauses

Italian speakers conform to the general cross-linguistic preference for SRC over ORC (Adani et al. 2010; Arosio et al. 2018)

 (1) Il cavallo che ha inseguito i leoni The horse that has chased the lions
 "The horse that chased the lions"

(2) Il cavallo che i leoni hanno inseguito The horse that the lions have chased"The horse that the lions chased"

SRC > ORC

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

(3) Il cavallo che ha inseguito il leone The horse that has chased the lion
a. "The horse that chased the lion" SRC
b. "The horse that the lion chased" ORCp

$\mathbf{SRC} > \mathbf{ORCp}$

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

(3) Il cavallo che ha inseguito il leone The horse that has chased the lion
a. "The horse that chased the lion" SRC
b. "The horse that the lion chased" ORCp

$\mathbf{SRC} > \mathbf{ORCp}$

Postverbal Subjects and Ambiguity

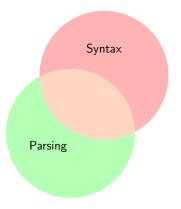
Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

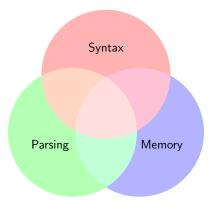
(3) Il cavallo che ha inseguito il leone The horse that has chased the lion
a. "The horse that chased the lion" SRC
b. "The horse that the lion chased" ORCp

$\mathbf{SRC} > \mathbf{ORCp}$

Agreement can disambiguate:

(4) Il cavallo che hanno inseguito i leoni The horse that have chased the lions"The horse that the lions chased"


ORCp


Asymmetries in Italian Relative Clauses Il cavallo che ha inseguito i leoni (1)The horse that has chased the lions "The horse that chased the lions" SRC (2) Il cavallo che i leoni hanno inseguito The horse that the lions have chased "The horse that the lions chased" ORC (4) Il cavallo che hanno inseguito i leoni The horse that have chased the lions "The horse that the lions chased" ORCp

Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)

$\mathbf{SRC} > \mathbf{ORC} > \mathbf{ORCp}$

Forward to the Past

What is the relation between grammatical operations and cognitive processes?

Derivational Theory of Complexity (Miller and Chomsky, 1963)

- Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)
- Essentially: there is a cost to mental computations.
- What is the right notion of syntactic derivation?
- What is costly? And why?

Forward to the Past

What is the relation between grammatical operations and cognitive processes?

Derivational Theory of Complexity (Miller and Chomsky, 1963)

 Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)

Essentially: there is a cost to mental computations.

- What is the right notion of syntactic derivation?
- What is costly? And why?

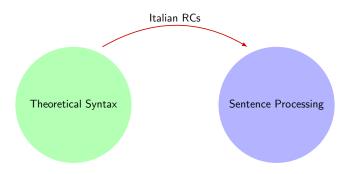
1 An explicit syntactic theory \rightarrow Minimalist grammars (MGs)

An explicit syntactic theory → Minimalist grammars (MGs)
 A theory of how structures are built → top-down parser

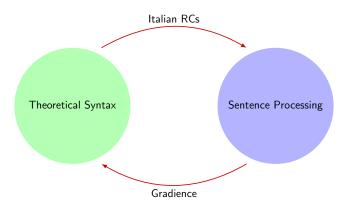
- $\blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)$
- **2** A theory of how structures are built \rightarrow top-down parser
- **3** A psychologically grounded linking theory \rightarrow tenure

An explicit syntactic theory → Minimalist grammars (MGs)
 A theory of how structures are built → top-down parser

3 A psychologically grounded linking theory \rightarrow tenure


If you want to understand it, you can understand it!

Building Bridges


Theoretical Syntax

Sentence Processing

Building Bridges

Building Bridges

Outline

1 Parsing Minimalist Grammars

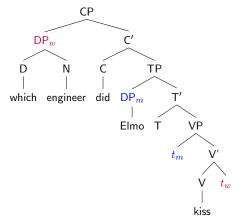
2 Case Study: Italian Postverbal Subjects

3 Case Study: Gradience in Island Effects (in English)

4 Conclusion

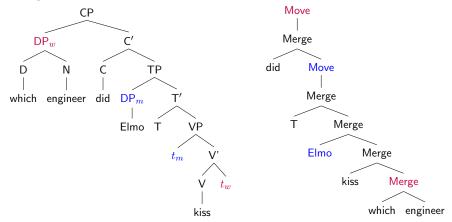
Minimalist Grammars (MGs)

We need an explicit model of syntactic structures...


Ed Stabler

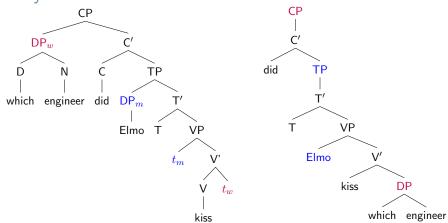
 Minimalist grammars (MGs): a formalization of Chomskyan syntax (Chomsky 1995; Stabler 1997)

Technical details!


- Weakly equivalent to MCFGs
- Essentially: CFGs with a more complicated mapping from trees to strings
- REG tree language!

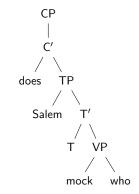
MG Syntax: Derivation Trees

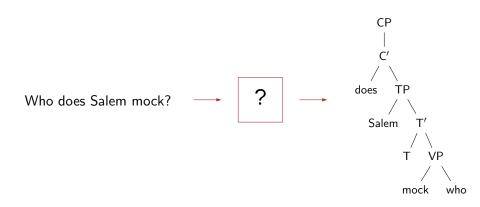
Phrase Structure Tree

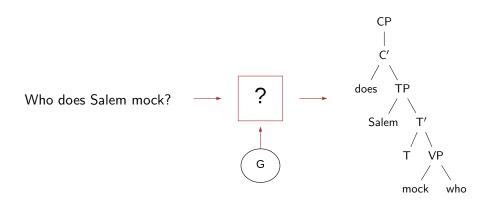

MG Syntax: Derivation Trees

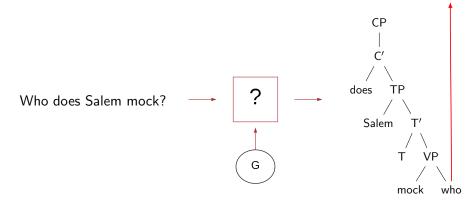
Phrase Structure Tree

Derivation Tree

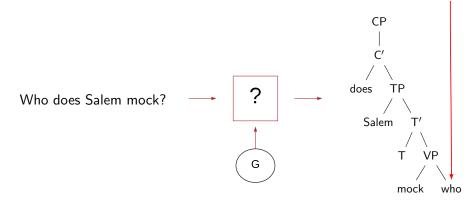

MG Syntax: Derivation Trees

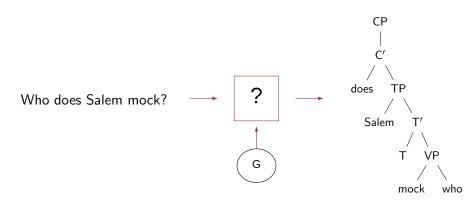



Phrase Structure Tree

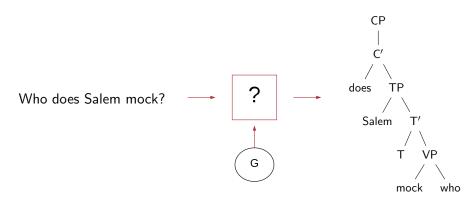

Derivation Tree

Who does Salem mock?





The Job of a Parser



Psychologically plausible(-ish)

The Job of a Parser

Top-down

- Psychologically plausible(-ish)
- Insight: We can build lexicalized grammars top-down!
- Assumption: Parser as an oracle!

Top-Down Parsing: The Intuition

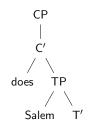
CP

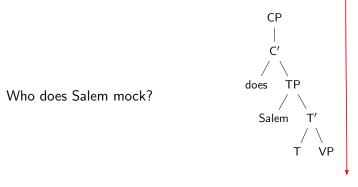
Top-Down Parsing: The Intuition

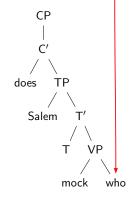
- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!

CP

C'


- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!


- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!


- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!

- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!

- Builds the structure from top to bottom
- Takes elements in an out of memory
- Complexity of the structure \approx how much memory is used!

Technical details!

String-driven recursive descent parser (Stabler 2013)

- step 1 CP is conjectured
- step 2 CP expands to C
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found

Technical details!

String-driven recursive descent parser (Stabler 2013)

 ^{1}CP

Who • does • Salem • T • mock

step 1 CP is conjectured

- step 2 CP expands to C
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

Technical details!

String-driven recursive descent parser (Stabler 2013)

• Who • does • Salem • T • mock

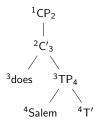
step 1 *CP* is conjectured

step 2 CP expands to C'

- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

String-driven recursive descent parser (Stabler 2013)

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found



Technical details!

String-driven recursive descent parser (Stabler 2013)

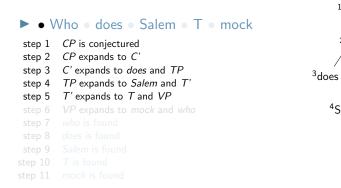
Who does Salem T mock Step 1 CP is conjectured Step 2 CP expands to C' Step 3 C' expands to does and TP Step 4 TP expands to Salem and T' Step 5 T' expands to T and VP Step 6 VP expands to mock and who Step 7 who is found Step 8 does is found Step 9 Salem is found Step 10 T is found

step 11 *mock* is found

 $^{1}CP_{2}$

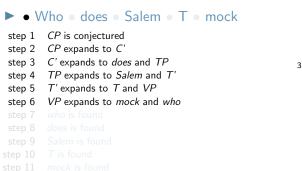
 ${}^{2}C'_{3}$

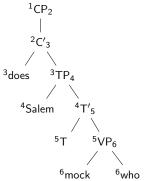
⁴Salem


³TP₄

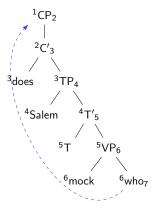
5т

Incremental Top-Down Parsing

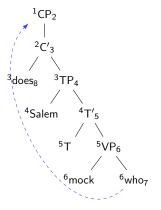



String-driven recursive descent parser (Stabler 2013)

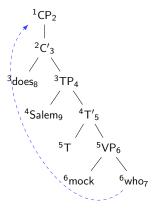
String-driven recursive descent parser (Stabler 2013)



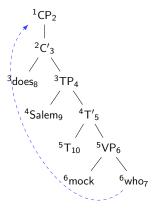
String-driven recursive descent parser (Stabler 2013)


- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

String-driven recursive descent parser (Stabler 2013)

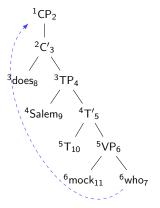

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

String-driven recursive descent parser (Stabler 2013)

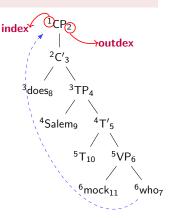

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found



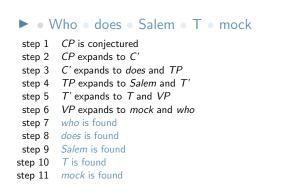
String-driven recursive descent parser (Stabler 2013)

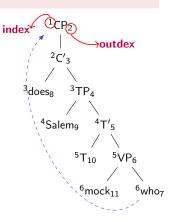

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

String-driven recursive descent parser (Stabler 2013)


- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found

Technical details!


String-driven recursive descent parser (Stabler 2013)


- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found

String-driven recursive descent parser (Stabler 2013)

Index and Outdex are our connection to memory!

Memory-Based Complexity Metrics

 Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory Size How much information is stored in a node ⇒ Intuitively, the length of its movement dependency!

Formalized into **complexity metrics**

MaxTenure $max(\{tenure-of(n)|n a node of the tree\})$

SumSize $\sum_{m \in M} size(m)$

Ranked $\langle MaxTenure, SumSize \rangle$

Greg Kobele

Sabrina Gerth

John Hale

Memory-Based Complexity Metrics

 Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory Size How much information is stored in a node ⇒ Intuitively, the length of its movement dependency!

Formalized into complexity metrics MaxTenure max({tenure-of(n)|n a node of the tree})

SumSize $\sum_{m \in M} size(m)$

Ranked $\langle MaxTenure, SumSize \rangle$

Greg Kobele

Sabrina Gerth

John Hale

Memory-Based Complexity Metrics

 Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory Size How much information is stored in a node ⇒ Intuitively, the length of its movement dependency!

Formalized into complexity metrics MaxTenure max({tenure-of(n)|n a node of the tree})

SumSize $\sum_{m \in M} size(m)$ Ranked $\langle MaxTenure, SumSize \rangle$

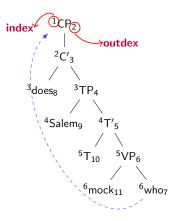
Greg Kobele

Sabrina Gerth

John Hale

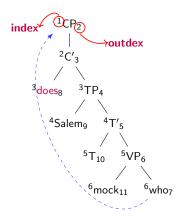
Processing Asymmetries All the Way Down

 $<\!\!\mathrm{MAXT,SUMS}\!\!> \mathsf{makes \ correct \ predictions \ cross-linguistically!}$

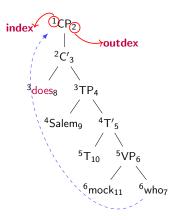

Across Many Constructions

- Right > center embedding (Kobele et al. 2012)
- Crossing > nested dependencies (Kobele et al. 2012)
- SC-RC > RC-SC (Graf & Marcinek 2014)
- SRC > ORC (Graf et al. 2017)
- Postverbal subjects in Italian (De Santo 2019)
- Persian attachment ambiguities (De Santo & Shafiei 2019)
- Gradient acceptability (De Santo 2020)

Across Languages

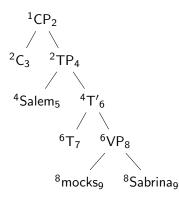

- English, German, Italian
- Korean, Japanese
- Mandarin Chinese
- Persian

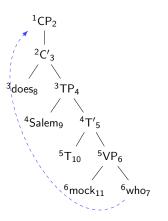
Computing Metrics: An Example


Tenure how long a node is kept in memory

Computing Metrics: An Example

Tenure how long a node is kept in memory **Tenure**(*does*) = 8 - 3 = 5


Computing Metrics: An Example


Tenure how long a node is kept in memory Tenure(does) = 8 - 3 = 5MaxTenure = $max{Tenure(<math>does$), Tenure(Salem),...} = 5

Contrasting Derivations

MaxTenure = 2

MaxTenure = 5

Automatizing Helps!

• mgproc: A Python Package for MG Processing Research

This is a collection of Python3 scripts to facilitate the investigation of human processing from the perspective of Minimalist grammars (MGs).

Background

MGs were developed in Stabler (1997) as a formalization of Chomsky's Minimalist program. A top-down parser for MGs is defined in Stabler (2013) and has been implemented in a number of languages. A number of subsequent works have successfully used this parser to make predictions about relative difficulty in sentence processing. Good starting points with a review of the previous literature are Gerth (2015) and Graf et al. (to appear).

- Gerth, Sabrina: Memory Limitations in Sentence Comprehension
- Graf, Thomas, James Monette, and Chong Zhang (to appear): Relative Clauses as a Benchmark for Minimalist Parsing (link to be added soon)
- · Stabler, Edward (1997): Derivational Minimalism
- · Stabler, Edward (2013): Two Models of Minimalist, Incremental Syntactic Analysis

Quick Start Guide

With mgproc you can easily compare MG derivation trees with respect to thousands of complexity m processing. The scripts integrate well with a LaTeX-centric workflow, following the ideal of OpenSciet publication form a cohesive unit. Usually a parsed derivation tree is specified by four files. Assuming foo, we have:

• Open source \Rightarrow in prep. for *Journal of Open Source Software*

- User-friendly!
- Easy to modify!

Summary of the Approach

General Idea

(Kobele et al. 2012; Gerth 2015; Graf et al. 2017)

- Pick two competing derivations
- 2 Evaluate metrics over each
 - Lowest score means easiest!
- 3 Compare parser's prediction to experimental data

Remember!

If you want to understand it, you can understand it!

MG Parsing	Italian RCs Gra	dience	Conclusio
Reminde	r: Asymmetries in Italian Rela	ative Clauses	
(1)	Il cavallo che ha inseguito i The horse that has chased the		
	"The horse that chased the lions"	SR	С
(2)	Il cavallo che i leoni hanno in The horse that the lions have ch	0	
	"The horse that the lions chased"	OR	С
(4)	Il cavallo che hanno inseguito i The horse that have chased the		
	"The horse that the lions chased"	ORC	þ
Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)			

$\mathbf{SRC} > \mathbf{ORC} > \mathbf{ORCp}$

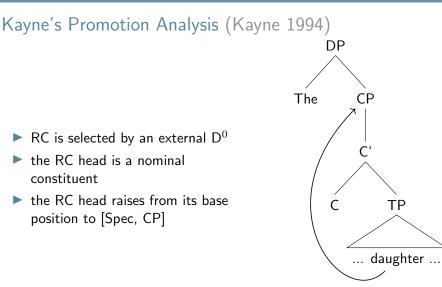
Modeling Assumptions

Reminder:

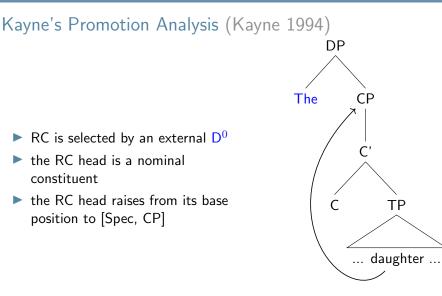
- Parsing strategy
 Top-down parser
- Complexity Metrics
 MaxTenure and SumSize

Degrees of freedom: Syntactic analyses

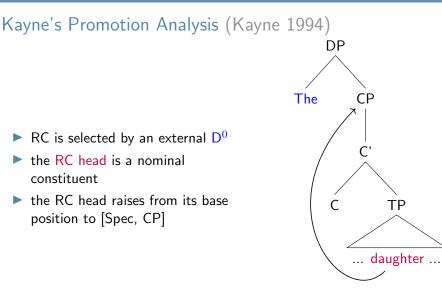
- **1** RC constructions \rightarrow (Kayne 1994)
- **2** Postverbal subjects \rightarrow (Belletti & Leonini 2004)

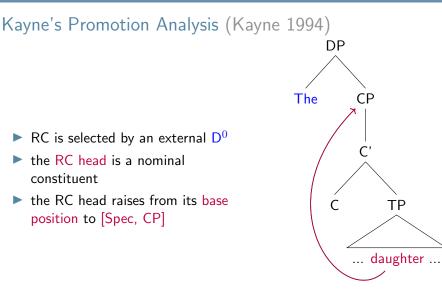

Modeling Assumptions

Reminder:


- Parsing strategy
 Top-down parser
- Complexity Metrics
 MaxTenure and SumSize

Degrees of freedom: Syntactic analyses

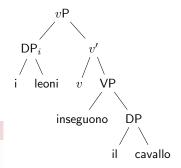

- **1** RC constructions \rightarrow (Kayne 1994)
- **2** Postverbal subjects \rightarrow (Belletti & Leonini 2004)


 $[DP \text{ The } [CP \text{ daughter}_i] \text{ that } t_i \text{ was on the balcony }]]]$

 $[DP \text{ The } [CP \text{ daughter}_i [\text{ that } t_i \text{ was on the balcony }]]]$

 $[DP \text{ The } [CP \text{ daughter}_i [\text{ that } t_i \text{ was on the balcony }]]]$

 $[DP \text{ The } [CP \text{ daughter}_i [\text{ that } t_i \text{ was on the balcony }]]]$

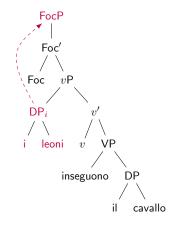

Postverbal Subjects (Belletti & Leonini 2004)

- (5) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- the subject DP raises to Spec, FocP

The whole vP raises to Spec, TopP

Technical details!

 an expletive pro is base generated in Spec, TP



Postverbal Subjects (Belletti & Leonini 2004)

- (6) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- the subject DP raises to Spec, FocP
- The whole vP raises to Spec, TopP

Technical details!

 an expletive pro is base generated in Spec, TP

Postverbal Subjects (Belletti & Leonini 2004) pro_i TopP (7)Inseguono il cavallo i leoni Chase the horse the lions Top' "The lions chase the horse" FocP Top the subject DP raises to Spec, FocP Foc' The whole vP raises to Spec, TopP Foc $v\mathsf{P}$ DP_i leoni inseguono

cavallo

DP

il

22 V_P

Postverbal Subjects (Belletti & Leonini 2004) pro_i TopP (7)Inseguono il cavallo i leoni Chase the horse the lions Top' "The lions chase the horse" FocP Top the subject DP raises to Spec, FocP Foc' The whole vP raises to Spec, TopP $v\mathsf{P}$ Foc Technical details! DP_i an expletive pro is base generated in leoni Spec, TP inseguono

cavallo

DP

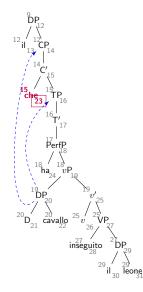
il

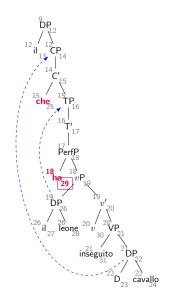
22 V_P

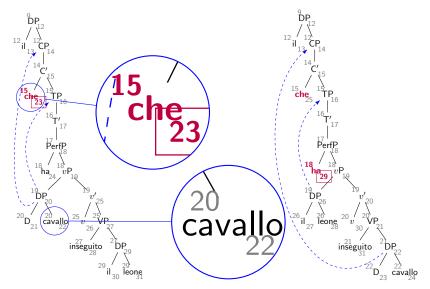
Modeling Results

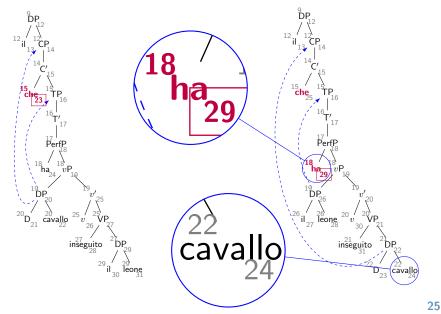
(1)	Il cavallo che ha inseguito i leoni	
	The horse that has chased the lions	
	"The horse that chased the lions"	SRC
(2)	Il cavallo che i leoni hanno inseguito The horse that the lions have chased	
	"The horse that the lions chased"	ORC
(4)	Il cavallo che hanno inseguito i leoni The horse that have chased the lions	
	"The horse that the lions chased"	ORCp

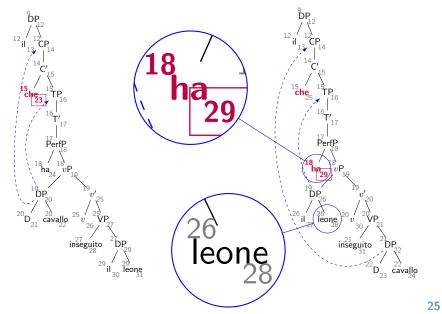
SRC > ORC > ORCp


Modeling Results


(1)	Il cavallo che ha inseguito i leoni	
	The horse that has chased the lions	
	"The horse that chased the lions"	SRC
(2)	Il cavallo che i leoni hanno inseguito	
	The horse that the lions have chased	
	"The horse that the lions chased"	ORC
(4)	Il cavallo che hanno inseguito i leoni	
	The horse that have chased the lions	
	"The horse that the lions chased"	ORCp

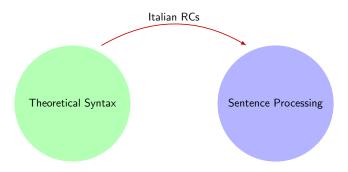

	SRC	>	ORC	>	ORCp
MaxTenure	8/che		11/ha		16/Foc
SumSize	18		24		31


Modeling Results

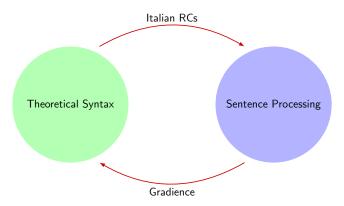

(1)	Il cavallo che ha inseguito i leoni	
	The horse that has chased the lions	
	"The horse that chased the lions"	SRC
(2)	Il cavallo che i leoni hanno inseguito	
	The horse that the lions have chased	
	"The horse that the lions chased"	ORC
(4)	Il cavallo che hanno inseguito i leoni	
	The horse that have chased the lions	
	"The horse that the lions chased"	ORCp

Summary of Results (De Santo 2019)

Clause Type	<maxtenure,sumsize></maxtenure,sumsize>
obj. SRC > ORC	\checkmark
obj. SRC $>$ ORCp	\checkmark
obj. $ORC > ORCp$	\checkmark
subj. $SRC > ORC$	\checkmark
subj. SRC $>$ ORCp	\checkmark
subj. $ORC > ORCp$	\checkmark
matrix SVO > VOS	\checkmark
VS unacc $>$ VS unerg	\checkmark


Table: Predictions of the MG parser by contrast.

Interim Summary


Asymmetries in Italian postverbal subject constructions

- Derived just from (fine-grained) structural differences!
- Ongoing: expand range of syntactic analyses;
- Ongoing: cross-linguistic comparisons.
- <MAXT,SUMS> gives consistent results!
 - Right vs. center embedding, attachment ambiguities, relative clause preferences
 - English, German, Korean, Japanese, Persian, Mandarin Chinese
 - More?

Moving on

Moving on

Acceptability and Grammaticality

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought *t*?

Acceptability and Grammaticality

1 What do you think that John bought *t*?

2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

Acceptability and Grammaticality

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

Acceptability judgments \approx Grammaticality judgments

Gradience in Acceptability Judgments

- 1 What do you think that John bought *t*?
- 2 *What do you wonder whether John bought *t*?

Gradience in Acceptability Judgments

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who *t* wonders whether John bought a car?

Gradience in Acceptability Judgments

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who *t* wonders whether John bought a car?

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

Models of Gradience

(At least two) theories of gradience:

- Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- Gradience due to extra-grammatical factors (Chomsky 1975; Schütze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

Models of Gradience

(At least two) theories of gradience:

- Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- Gradience due to extra-grammatical factors (Chomsky 1975; Schütze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- OT-style constraint ranking
- Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schütze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- OT-style constraint ranking
- Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schütze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

Modeling Gradience with an MG Parser

The model is the same as before

- **1** A formal model of syntax \rightarrow Minimalist grammars (MGs)
- **2** A theory of how structures are built \rightarrow MG parser
- **3** A linking theory: higher memory cost \Rightarrow lower acceptability
- Sensitive to fine-grained structural differences!
- Minimal, pairwise comparisons are maximally interpretable!

A proof-of-concept:

▶ Variation of Island effects in English (Sprouse et al. 2012)

- 1 What do you think that John bought *t*?
- 2 What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who *t* wonders whether John bought a car?

- 1 What do you think that John bought t?
- 2 What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

- 1 What do you think that John bought *t*?
- 2 What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who *t* wonders whether John bought a car?

Non-Island — Embedded

Island — Embedded

Non-Island — Matrix

Island — Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

- 1 What do you think that John bought *t*?
- 2 What do you wonder whether John bought t?
- 3 Who *t* thinks that John bought a car?
- 4 Who *t* wonders whether John bought a car?

Non-Island — Embedded

Island — Embedded

Non-Island — Matrix

Island — Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

Sprouse at al. (2012)

Four island types

Subject islands

What do you think the speech about t interrupted the show about global warming?

Adjunct islands

- What do you laugh if John leaves t at the office?
- **Complex NP islands**
 - What did you make the claim that John bought t?

Whether islands

What do you wonder whether John bought t?

Gap Position \times Structure

- 1 Matrix vs. Embedded
- Island vs. Non-Island

Sprouse at al. (2012)

Four island types

Subject islands

What do you think the speech about t interrupted the show about global warming?

Adjunct islands

- What do you laugh if John leaves t at the office?
- **Complex NP islands**
 - What did you make the claim that John bought t?

Whether islands

What do you wonder whether John bought t?

Gap Position \times Structure

- 1 Matrix vs. Embedded
- Island vs. Non-Island

Modeling Results (De Santo 2020)

Island Type	Sprouse	et al.	(2012)	MG Parser
Subj. Island 1	Subj. — Non Isl.	>	Obj. — Non Isl.	√
	Subj. — Non Isl.	>	Obj. — Isl.	\checkmark
	Subj. — Non Isl.	>	Subj. — Isl.	\checkmark
	Obj. — Non Isl.	>	Obj. — Isl.	\checkmark
	Obj. — Non Isl.	>	Subj. — Isl.	\checkmark
	Obj. — Isl.	>	Subj. — Isl.	×
	Matrix — Non Isl.	>	Emb. — Non Isl.	~
	Matrix — Non Isl.	>	Matrix — Isl.	\checkmark
Subj. Island 2	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Non Isl.	>	Emb. — Non Isl.	\checkmark
	Matrix — Non Isl.	· ·	Matrix — Isl.	\checkmark
Adj. Island	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
Auj. Islanu	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	✓
CNP Island	Matrix — Non Isl.	>	Emb. — Non Isl.	\checkmark
	Matrix — Non Isl.	=	Matrix — Isl.	\checkmark
	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark

Modeling Results (De Santo 2020)

Island Type	Sprouse	et al.	(2012)	MG Parser
	Subj. — Non Isl.	>	Obj. — Non Isl.	✓
	Subj. — Non Isl.	>	Obj. — Isl.	\checkmark
	Subj. — Non Isl.	>	Subj. — Isl.	\checkmark
Subj. Island 1	Obj. — Non Isl.	>	Obj. — Isl.	\checkmark
	Obj. — Non Isl.	>	Subj. — Isl.	\checkmark
	Obj. — Isl.	>	Subj. — Isl.	×
	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	\checkmark
Subi Island 2	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
Subj. Island 2	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	\checkmark
Adj. Island	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
Auj. Islaliu	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark
CNP Island	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	=	Matrix — Isl.	\checkmark
	Matrix — Non Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Emb. — Isl.	\checkmark
	Matrix — Isl.	>	Matrix — Isl.	\checkmark
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark

TL;DR

Success in all cases but one!

Subject Island: Case 1

(5) a. What do you think the speech interrupted t? Obj — Non Island

- b. What do you think *t* interrupted the show? Subj Non Island
- c. What do you think the speech about global warming interrupted the show about t?
 Obj — Island
- d. What do you think the speech about *t* interrupted the show about global warming?
 Subj — Island

Sprouse et al. (2012)		MG Parser	Clause Type	MaxT	SumS
Subj. — Non Isl. > O	bj. — Non Isl.	\checkmark	<u>,</u>		
Subj. — Non Isl. > O	bj. — Isl.	\checkmark	Obj./Non Island	14/ <i>do</i>	19
Subj. — Non Isl. > Su	ubj. — Isl.	\checkmark	Subj./Non Island	11/ <i>do</i>	14
Obj. — Non Isl. > O	bj. — Isl.	\checkmark	Obj./Island	23/T2	22
Obj. — Non Isl. > Su	ubj. — Isl.	\checkmark	Subj./Island	15/do	20
Obj. — Isl. > Su	ubj. — Isl.	×	Subj./ Isiallu	15/40	20

Subject Island: Case 1

(5) a. What do you think the speech interrupted t? Obj — Non Island

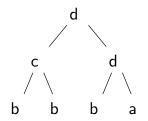
- b. What do you think *t* interrupted the show? Subj Non Island
- c. What do you think the speech about global warming interrupted the show about t?
 Obj — Island
- d. * What do you think the speech about *t* interrupted the show about global warming?
 Subj — Island

Sprouse et al. (2012)		MG Parser	Clause Type	MaxT	SumS
Subj. — Non Isl.	> Obj. — Non Isl.	\checkmark			
Subj. — Non Isl.	> Obj. — Isl.	\checkmark	Obj./Non Island	14/ <i>do</i>	19
Subj. — Non Isl. 🔅	> Subj. — Isl.	\checkmark	Subj./Non Island	11/ <i>do</i>	14
Obj. — Non Isl. 🔅	> Obj. — Isl.	\checkmark	Obj./Island	23/ <i>T2</i>	22
Obj. — Non Isl.	> Subj. — Isl.	\checkmark	Subj./Island	15/do	20
Obj. — Isl.	> Subj. — Isl.	×	Subj./Island	15/00	20

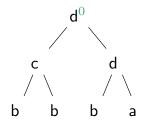
Subject Island: Case 2

(6) a. Who t thinks the speech interrupted the primetime TV show?

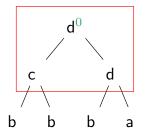
Matrix — Non Island

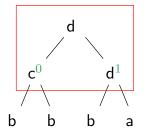

b. What do you think *t* interrupted the primetime TV show?

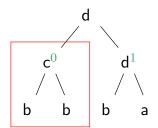
Emb. — Non Island

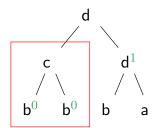

- c. Who t thinks the speech about global warming interrupted the primetime TV show? Matrix — Island
- d. What do you think the speech about *t* interrupted the primetime TV show?
 Emb. Island

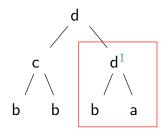
Sprouse et al. (2012)		MG Parser	Clause Type	MaxT	SumS	
Matrix — Non Isl.	>	Emb. — Non Isl.	\checkmark		IVIUX I	54115
Matrix — Non Isl.	>	Matrix — Isl.	\checkmark	Matrix — Non Isl.	5/ <i>C</i>	9
Matrix — Non Isl.	>	Emb. — Isl.	\checkmark	Emb. — Non Isl.	11/ <i>do</i>	14
Matrix — Isl.	>	Emb. — Isl.	\checkmark	Matrix — Isl.	$11/T_{BC}$	9
Matrix — Isl.	>	Matrix — Isl.	\checkmark	Emb. — Isl.	$17/T_{BC}$	20
Emb. — Non Isl.	>	Emb. — Isl.	\checkmark	LIND. ISI.	11/1RC	20

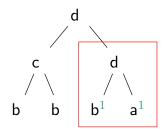

Graf & De Santo (2019)

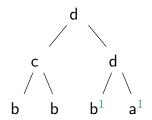

Graf & De Santo (2019)


Graf & De Santo (2019)

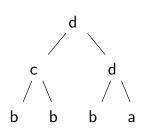

Graf & De Santo (2019)


Graf & De Santo (2019)

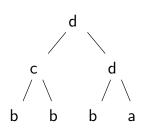

Graf & De Santo (2019)


Graf & De Santo (2019)

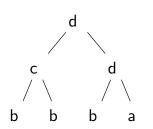
Graf & De Santo (2019)



Graf & De Santo (2019)


Graf & De Santo (2019)

Sensing Tree Automata (Martens 2006) as a subregular bound on the complexity of syntactic dependencies.


 Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)

Graf & De Santo (2019)

- Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)
- Constraints improve parsing performance by exponentially reducing the search space (Stabler 2013)

Graf & De Santo (2019)

- Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)
- Constraints improve parsing performance by exponentially reducing the search space (Stabler 2013)
- Can be pre-compiled in the MG parse schema as a deterministic top-down filter (De Santo & Graf, in prep.)

Summary

Gradience from a categorical MG grammar?

- The first (quantitative) model of this kind!
- Overall, a success! \Rightarrow **just** from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- Modulate range of dependencies
- Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)

Summary

Gradience from a categorical MG grammar?

- The first (quantitative) model of this kind!
- Overall, a success! \Rightarrow just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- Modulate range of dependencies
- Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)

Summary

Gradience from a categorical MG grammar?

- The first (quantitative) model of this kind!
- Overall, a success! \Rightarrow just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- Modulate range of dependencies
- Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)

From the Trees (back) to the Forest

- Fully specified parsing model allows for precise predictions
- Tight connection with current generative syntax
- Successful on a variety of cross-linguistic constructions
- + insights about the structure of the grammar

Not Just Theoretical Insights!

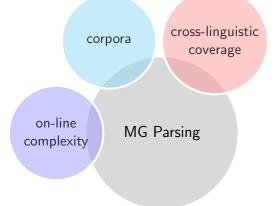
The human parser outperforms our fastest parsers

From the Trees (back) to the Forest

- Fully specified parsing model allows for precise predictions
- Tight connection with current generative syntax
- Successful on a variety of cross-linguistic constructions
- + insights about the structure of the grammar

Not Just Theoretical Insights!

The human parser outperforms our fastest parsers

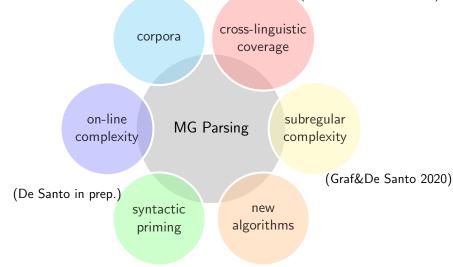

MG Parsing

cross-linguistic coverage

MG Parsing



MG Parsing



(De Santo&Shafiei 2019)

Selected References I

- 1 Chomsky, N. (1995). The minimalist program. Cambridge, Mass.: MIT Press.
- 2 De Santo, A. (2019). Testing a Minimalist gram- mar parser on Italian relative clause asymmetries. In Proceedings of CMCL 2019, June 6 2019, Minneapolis, Minnesota.
- 3 De Santo, A. (2020). MG Parsing as a Model of Gradient Acceptability in Syntactic Islands. (To appear) In *Proceedings of SCiL 2020*, Jan 2-5, New Orleans.
- 4 De Santo, A. and Shafiei, N. (2019). On the structure of relative clauses in Persian: Evidence from computational modeling and processing effects. *Talk at the NACIL2*, April 19-21 2019, University of Arizona.
- 5 Graf, T. and Monette, J. and Zhang, C. (2017). Relative Clauses as a Benchmark for Minimalist Parsing. Journal of Language Modelling.
- 6 Kobele, G.M., Gerth S., and Hale. J. (2012). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32–51. Springer.
- 7 Sprouse, J., Wagers, M. and Phillips, C. (2012). A test of the relation between working-memory capacity and syntactic island effects. *Language*.
- 8 Stabler, E.P. (2013). Bayesian, minimalist, incremental syntactic analysis. Topics in Cognitive Science 5:611–633.
- 9 Stabler, E.P. (1997). Derivational minimalism. In Logical aspects of computational linguistics, ed.

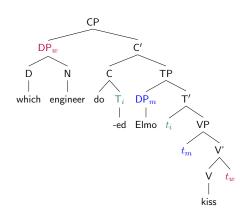
Christian Retore, volume 1328 of Lecture Notes in Computer Science, 68-95. Berlin: Springer.

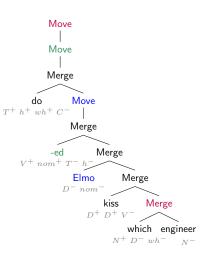
Appendix

Why MGs?

Vast analytical coverage

MGs handle virtually all analyses in the generative literature


- 2 Centrality of derivation trees
 - MGs can be viewed as CFGs with a more complicated mapping from trees to strings
- **3** Simple parsing algorithms
 - ► Variant of a recursive descent parser for CFGs ⇒ cf. TAG (Rambow & Joshi, 1995; Demberg, 2008)

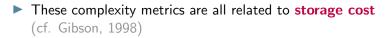

Some Important Properties of MGs

- MGs are weakly equivalent to MCFGs and thus mildly context-sensitive. (Harkema 2001, Michaelis 2001)
- But we can decompose them into two finite-state components: (Michaelis et al. 2001, Kobele et al. 2007, Monnich 2006)
 - a regular language of well-formed derivation trees
 - an MSO-definable mapping from derivations to phrase structure trees

 Remember: Every regular tree language can be re-encoded as a CFG (with more fine-grained non-terminal labels). (Thatcher 1967)

Fully Specified Derivation Trees

Phrase Structure Tree


Derivation Tree

Technical Fertility of MGs

MGs can accommodate the full syntactic toolbox:

- sidewards movement (Stabler, 2006; Graf 2013)
- affix hopping (Graf 2012; Graf2013)
- clustering movement (Gartner & Michaelis 2010)
- tucking in (Graf 2013)
- ATB movement (Kobele 2008)
- copy movement (Kobele 2006)
- extraposition (Hunter & Frank 2014)
- Late Merge (Kobele 2010; Graf 2014)
- Agree (Kobele 2011; Graf 2011)
- adjunction (Fowlie 2013; Hunter 2015)
- ► TAG-style adjunction (Graf 2012)

Why These Metrics?

We could implement alternative ones

- (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...

 We want to keep the model simple (but not trivial):
 Tenure and Size only refer to the geometry of the derivation
 they are sensitive the specifics of tree-traversal (cf. node-count; Hale, 2001)

Why These Metrics?

- These complexity metrics are all related to storage cost (cf. Gibson, 1998)
- We could implement alternative ones
 - (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...
- ▶ We want to keep the model simple (but not trivial):
 - Tenure and Size only refer to the geometry of the derivation
 - they are sensitive the specifics of tree-traversal (cf. node-count; Hale, 2001)

Italian Subjects: Probing the Results

Clause Type	MaxT	SumS
obj. SRC	8/che	18
obj. ORC	11/ha	24
obj. ORCp	16/ <i>Foc</i>	31
subj. SRC	21/v'	37
subj. ORC	21/v'	44
subj. ORCp	28/v'	56
matrix SVO	3/ha/v'	7
matrix VOS	7/Top/Foc	11
VS unacc	2/vP	3
VS unerg	7/Top/Foc	11

Table: Summary of $\rm MAXT$ (value/node) and $\rm SUMS$ by construction. Obj. and subj. indicate the landing site of the RC head in the matrix clause.

Postverbal Asymmetries: Possible Accounts?

$\mathbf{SRC} > \mathbf{ORC}$

DLT, active-filler strategy, Competition model, ...

ORC > ORCp

- more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

$\mathbf{SRC} > \mathbf{ORC}$

DLT, active-filler strategy, Competition model, ...

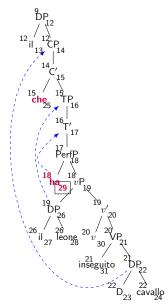
ORC > ORCp

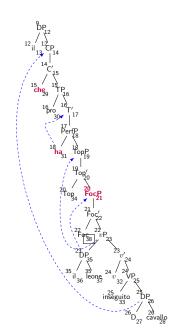
- more problematic (e.g., for DLT)
- can be explained by
 - **1** economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

$\mathbf{SRC} > \mathbf{ORC}$


DLT, active-filler strategy, Competition model, ...


ORC > ORCp

- more problematic (e.g., for DLT)
- can be explained by
 - **1** economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

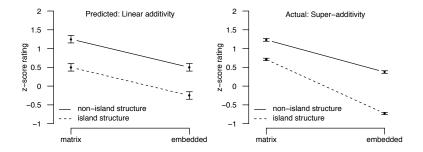
Can we give a purely structural account?

Results: ORC > ORCp

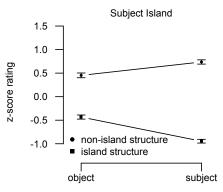
Additional Constructions

- Ambiguity in Matrix Clauses
- (7) Ha chiamato Gio Has called Giovanni
 - a. "He/she/it called Gio"
 - b. "Gio called"
- Unaccusatives vs. Unergatives
- (8) È arrivato Gio Is arrived Gio "Gio arrived"
- (9) Ha corso Gio Has ran Gio "Gio ran"

SVO VS


Unaccusative

Unergative


Gradience in Islands

A factorial design for islands effect:

• Gap Position \times Structure

Deriving Pairwise Comparisons

- Subj Non Island > Obj Non Island
- Subj Non Island > Obj Island
- Subj Non Island > Subj Island

etc.

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

 Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)

- hence, not modeling super-additivity
- spoilers: maybe we get some insights?
- Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- Islands: syntax or semantics?
 (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- Islands: syntax or semantics?
 (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

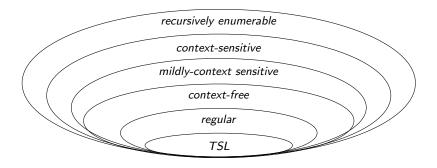
Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

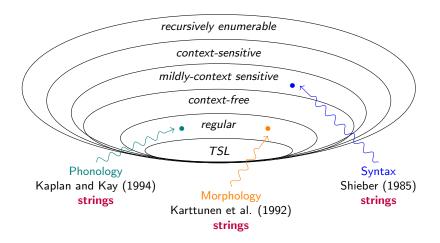
- Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

Subject Islands Case 1:

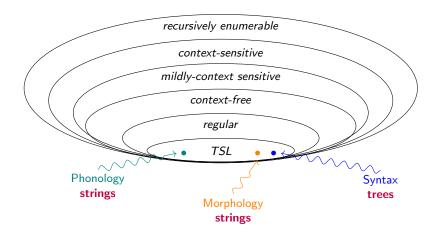
- (10) a. What do you think the speech interrupted t? Obj Non Island
 - b. What do you think *t* interrupted the show? Subj Non Island
 - c. What do you think the speech about global warming interrupted the show about t?
 Obj — Island
 - d. What do you think the speech about *t* interrupted the show about global warming?
 Subj — Island


Case 2:

- (11) a. Who *t* thinks the speech interrupted the primetime TV show? Matrix Non Island
 - b. What do you think t interrupted the primetime TV show?


Emb. — Non Island

- c. Who *t* thinks the speech about global warming interrupted the primetime TV show?
- d. What do you think the speech about *t* interrupted the primetime TV show?
 Emb. Island


Subregular Complexity

Subregular Complexity

Subregular Complexity

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

learnability

cognition

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

 \times Intervocalic Voicing iff applied an even times in the string

 \times Have a CP iff it dominates $\geq 3~{\rm TPs}$

learnability

cognition

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

× Intervocalic Voicing iff applied an even times in the string × Have a CP iff it dominates > 3 TPs

learnability

Learnable from positive examples of strings/trees.

cognition

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

× Intervocalic Voicing iff applied an even times in the string × Have a CP iff it dominates > 3 TPs

learnability

Learnable from positive examples of strings/trees.

cognition

Finite, flat memory