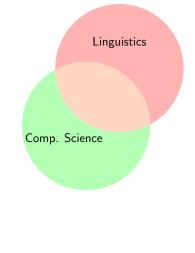
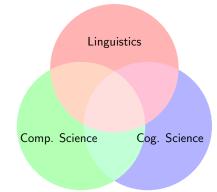
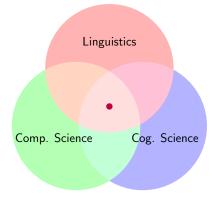
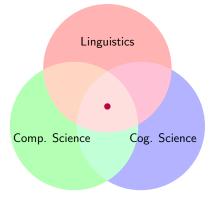


Parsing as a Window into Human Sentence Processing


Aniello De Santo


aniellodesanto.github.io aniello.desanto@stonybrook.edu


San Jose State Feb 6, 2020



- ▶ Modeling processing difficulty (De Santo 2019, De Santo in prep.)
- ► Cross-linguistic variation (De Santo & Shafiei 2019, De Santo & Zhang in prep.)
- ► Gradience in acceptability judgments (De Santo 2020)
- ► Computational parallels across linguistic modules (Aksenova & De Santo 2017, De Santo & Graf 2019)
- ► Constraints in acquisition (De Santo 2018, Graf & De Santo 2020)
- Animal Cognition (De Santo & Rawski, to appear)

- ► Modeling processing difficulty (De Santo 2019, De Santo in prep.)
- ► Cross-linguistic variation (De Santo & Shafiei 2019, De Santo & Zhang in prep.)
- ► Gradience in acceptability judgments (De Santo 2020)
- Computational parallels across linguistic modules
 (Aksenova & De Santo 2017, De Santo & Graf 2019)
- ► Constraints in acquisition (De Santo 2018, Graf & De Santo 2020)
- Animal Cognition (De Santo & Rawski, to appear)

Let's Start with Data!

Asymmetries in Italian Relative Clauses

Italian speakers conform to the general cross-linguistic preference for SRC over ORC (Adani et al. 2010; Arosio et al. 2018)

(1) Il cavallo che ha inseguito i leoni The horse that has chased the lions "The horse that chased the lions"

SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
"The horse that the lions chased"

ORC

SRC > ORC

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse that has chased the lion
 - a. "The horse that chased the lion"

SRC

b. "The horse that the lion chased"

ORCp

SRC > ORCp

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse that has chased the lion
 - a. "The horse that chased the lion"

SRC

b. "The horse that the lion chased"

ORCp

SRC > ORCp

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse—that has chased—the lion
 - a. "The horse that chased the lion"

ORCp

b. "The horse that the lion chased"

SRC

SRC > ORCp

Agreement can disambiguate:

cavallo che hanno inseguito i (4) leoni The horse that have chased the lions "The horse that the lions chased"

ORCp

Asymmetries in Italian Relative Clauses

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
"The horse that chased the lions"

SRC

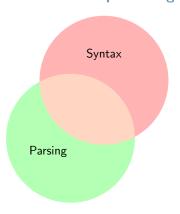
(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
"The horse that the lions chased"

ORC

(4) Il cavallo che hanno inseguito i leoni
The horse that have chased the lions
"The horse that the lions chased"


ORCp

Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)


SRC > ORC > ORCp

One Big Question


One Big Question

One Big Question

One Big Question

Forward to the Past

► What is the relation between grammatical operations and cognitive processes?

Derivational Theory of Complexity (Miller and Chomsky, 1963)

- ▶ Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)
- Essentially: there is a **cost** to mental computations.
- ▶ What is the right notion of syntactic derivation?
- ► What is costly? And why?

Forward to the Past

► What is the relation between grammatical operations and cognitive processes?

Derivational Theory of Complexity (Miller and Chomsky, 1963)


- ▶ Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)
- Essentially: there is a cost to mental computations.
- ▶ What is the right notion of syntactic derivation?
- ► What is costly? And why?

A Formal Model of Sentence Processing

 \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)

A Formal Model of Sentence Processing

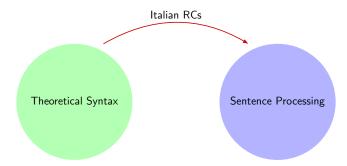
- \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser

A Formal Model of Sentence Processing

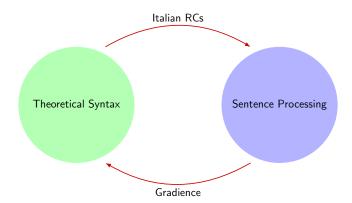
- **I** An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser
- lacksquare A psychologically grounded linking theory ightarrow tenure

A Formal Model of Sentence Processing

- \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser
- $oxed{3}$ A psychologically grounded linking theory ightarrow tenure


If you want to understand it, you can understand it!

Building Bridges



Building Bridges

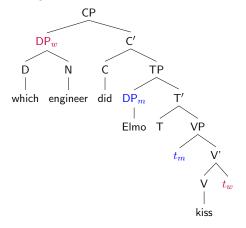
Building Bridges

Outline

- 1 Parsing Minimalist Grammars
- 2 Case Study: Italian Postverbal Subjects
- 3 Case Study: Gradience in Island Effects (in English)
- 4 Conclusion

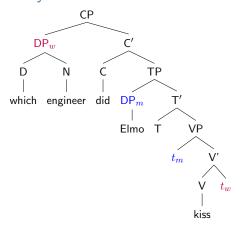
Minimalist Grammars (MGs)

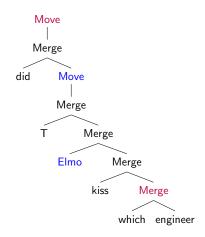
We need an explicit model of syntactic structures...


Ed Stabler

 Minimalist grammars (MGs): a formalization of Chomskyan syntax (Chomsky 1995; Stabler 1997)

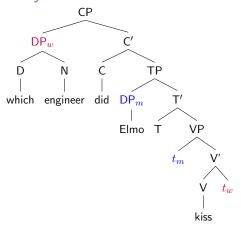
Technical details!

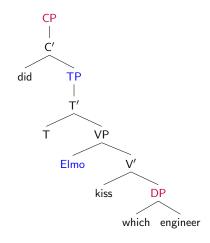

- ► Weakly equivalent to MCFGs
- Essentially: CFGs with a more complicated mapping from trees to strings


MG Syntax: Derivation Trees

Phrase Structure Tree

MG Syntax: Derivation Trees

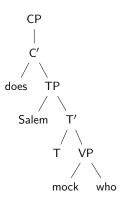




Phrase Structure Tree

Derivation Tree

MG Syntax: Derivation Trees



Phrase Structure Tree

Derivation Tree

Who does Salem mock?

Who does Salem mock?

?

CP

C'

does TP

Salem T'

T VP

mock who

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

CP

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

Bottom-up

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

- ► Bottom-up
- ► Top-down

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

- Bottom-up
- ► Top-down
 - Psychologically plausible

CP

Top-Down Parsing: The Intuition

Who does Salem mock?

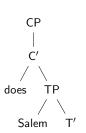
Top-Down Parsing: The Intuition

СР

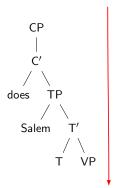
- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

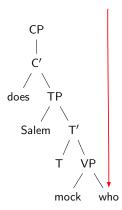
CP | C'


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ▶ Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Incremental Top-Down Parsing

Technical details!

```
who does Salem To mock

step 1 CP is conjectured

step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who

step 7 who is found

step 8 does is found

step 9 Salem is found

step 10 T is found
```

Incremental Top-Down Parsing

Technical details!

► String-driven recursive descent parser (Stabler 2013)

¹CP

```
▶ • Who • does • Salem • T • mock
```

```
step 1 CP is conjectured
```

- step 2 CP expands to C
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- tep 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

Incremental Top-Down Parsing

Technical details!

```
who does Salem To mock

step 1 CP is conjectured
step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who

step 7 who is found

step 8 does is found

step 9 Salem is found

step 10 T is found
```

```
<sup>1</sup>CP<sub>2</sub>
|
|
<sup>2</sup>C'
```

Incremental Top-Down Parsing

Technical details!

```
who does Salem Tomock

step 1 CP is conjectured

step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

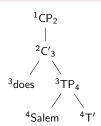
step 6 VP expands to mock and who

step 7 who is found

step 8 Salem is found

step 9 Salem is found

step 10 T is found
```

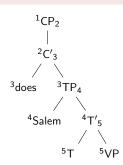


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 *VP* expands to *mock* and *who*
- tep 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 10 7 is found

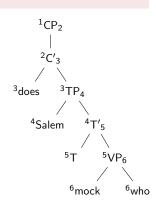


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 $\ \ CP$ expands to $\ C'$
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 10 mock is found

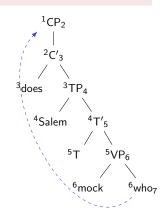


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 10 mock is found

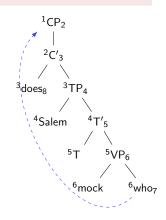


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 10 / is found

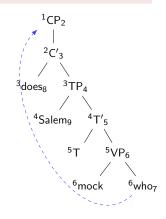


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 *CP* expands to *C'*
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 10 r is round

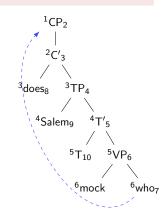

MG Parsing

Incremental Top-Down Parsing

Technical details!

```
Who does Salem T mock
```

- CP is conjectured step 1
- CP expands to C'step 2
- C' expands to does and TP step 3
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- VP expands to mock and who step 6
- who is found step 7
- step 8 does is found
- step 9 Salem is found

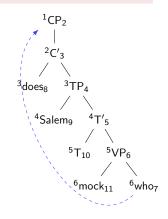

MG Parsing

Incremental Top-Down Parsing

Technical details!

```
▶ Who does Salem T • mock
```

- CP is conjectured step 1
- CP expands to C'step 2
- C' expands to does and TP step 3
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- VP expands to mock and who step 6
- who is found step 7
- step 8 does is found
- Salem is found step 9
- step 10
 - T is found

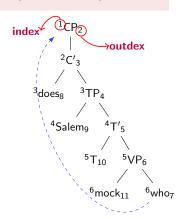


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found

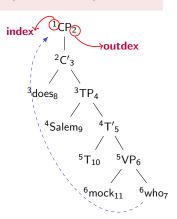


Incremental Top-Down Parsing

Technical details!

```
► • Who • does • Salem • T • mock
step 1   CP is conjectured
```

- step 2 *CP* expands to *C'*
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found



Incremental Top-Down Parsing

Technical details!

► String-driven recursive descent parser (Stabler 2013)

```
Who does Salem To mock
        CP is conjectured
step 1
step 2
        CP expands to C'
        C' expands to does and TP
step 3
step 4 TP expands to Salem and T'
step 5 T' expands to T and VP
       VP expands to mock and who
step 6
        who is found
step 7
        does is found
step 8
step 9
        Salem is found
step 10
        T is found
step 11
        mock is found
```


Index and Outdex are our connection to memory!

Memory-Based Complexity Metrics

► Memory usage (Kobele et al. 2012):

Tenure How long a node is kept in memory
Size How much information is stored in a node
⇒ Intuitively, the length of its movement dependency!

These can be formalized into complexity metrics

MaxTenure $max(\{\text{tenure-of}(n)|n \text{ a node of the tree}\})$ SumSize $\sum_{m \in M} size(m)$

Ranked $\langle MaxTenure, SumSize \rangle$

Greg Kobele

Sabrina Gerth

John Hale

Memory-Based Complexity Metrics

► Memory usage (Kobele et al. 2012):

Tenure How long a node is kept in memory
Size How much information is stored in a node
⇒ Intuitively, the length of its movement dependency!

These can be formalized into complexity metrics

 ${\sf MaxTenure}\ \, max(\{{\sf tenure-of}(n)|n\ {\sf a}\ {\sf node\ of\ the\ tree}\})$

SumSize $\sum_{m \in M} size(m)$

Ranked $\langle MaxTenure, SumSize \rangle$

Greg Kobele

Sabrina Gerth

John Hale

Memory-Based Complexity Metrics

► Memory usage (Kobele et al. 2012):

Tenure How long a node is kept in memory
Size How much information is stored in a node
⇒ Intuitively, the length of its movement dependency!

These can be formalized into complexity metrics

 $\label{eq:max} {\sf MaxTenure} \ \ max(\{{\sf tenure-of}(n)|n \ {\sf a} \ {\sf node} \ {\sf of} \ {\sf the} \ {\sf tree}\})$

SumSize $\sum_{m \in M} size(m)$

Ranked $\langle MaxTenure, SumSize \rangle$

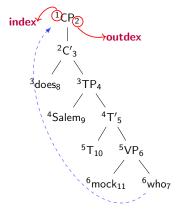
Greg Kobele

Sabrina Gerth

John Hale

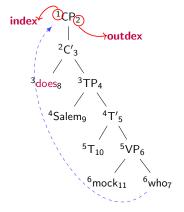
Processing Asymmetries All the Way Down

<MAXT,SUMS> makes correct predictions cross-linguistically!

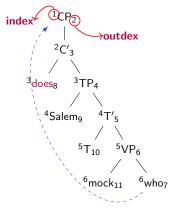

Across Many Constructions

- ▶ Right > center embedding (Kobele et al. 2012)
- Crossing > nested dependencies (Kobele et al. 2012)
- ► SC-RC > RC-SC (Graf & Marcinek 2014)
- ► SRC > ORC (Graf et al. 2017)
- ► Postverbal subjects in Italian (De Santo 2019)
- Persian attachment ambiguities (De Santo & Shafiei 2019)
- ► Gradient acceptability (De Santo 2020)

Across Languages

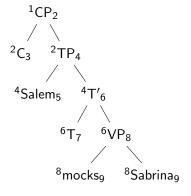

- ► English, German, Italian
- ► Korean, Japanese
- Mandarin Chinese
- Persian

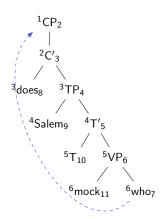
Computing Metrics: An Example


Tenure how long a node is kept in memory

Computing Metrics: An Example

Tenure how long a node is kept in memory **Tenure**(does) = 8 - 3 = 5


Computing Metrics: An Example


Tenure how long a node is kept in memory **Tenure**(does) = 8-3=5**MaxTenure** = $max\{$ **Tenure**(does), **Tenure**(Salem),... $\}=5$

Contrasting Derivations

MaxTenure = 2

MaxTenure = 5

Automatizing Helps!

◦ mgproc: A Python Package for MG Processing Research

This is a collection of Python3 scripts to facilitate the investigation of human processing from the perspective of Minimalist grammars (MGs).

Background

MGs were developed in Stabler (1997) as a formalization of Chomsky's Minimalist program. A top-down parser for MGs is defined in Stabler (2013) and has been implemented in a number of languages. A number of subsequent works have successfully used this parser to make predictions about relative difficulty in sentence processing. Good starting points with a review of the previous literature are Gerth (2015) and Graf et al. (to appear).

- Gerth, Sabrina: Memory Limitations in Sentence Comprehension
- Graf, Thomas, James Monette, and Chong Zhang (to appear): Relative Clauses as a Benchmark for Minimalist Parsing (link to be added soon)
- Stabler, Edward (1997): Derivational Minimalism
- Stabler, Edward (2013): Two Models of Minimalist, Incremental Syntactic Analysis

Quick Start Guide

With mgproc you can easily compare MG derivation trees with respect to thousands of complexity m processing. The scripts integrate well with a LaTeX-centric workflow, following the ideal of OpenScie publication form a cohesive unit. Usually a parsed derivation tree is specified by four files. Assuming foo, we have:

- lacktriangle Open source \Rightarrow in prep. for Journal of Open Source Software
- User-friendly!
- Easy to modify!

Summary of the Approach

General Idea

(Kobele et al. 2012; Gerth 2015; Graf et al. 2017)

- Pick two competing derivations
- 2 Evaluate metrics over each
 - Lowest score means easiest!
- 3 Compare parser's prediction to experimental data

Remember!

If you want to understand it, you can understand it!

Reminder: Asymmetries in Italian Relative Clauses

- (1) Il cavallo che ha inseguito i leoni
 The horse that has chased the lions

 "The horse that chased the lions"
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased

 "The horse that the lions chased"

 ORC
- (4) Il cavallo che hanno inseguito i leoni
 The horse that have chased the lions
 "The horse that the lions chased"

 ORCp

Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)

SRC > ORC > ORCp

Modeling Assumptions

Reminder:

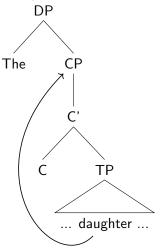
- ▶ Parsing strategy⇒ Top-down parser
- Complexity Metrics ⇒ MaxTenure and SumSize

Degrees of freedom: Syntactic analyses

- **1** RC constructions \rightarrow (Kayne 1994)
- 2 Postverbal subjects → (Belletti & Leonini 2004)

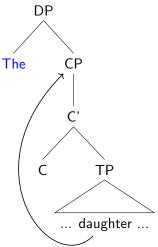
Modeling Assumptions

Reminder:


- ▶ Parsing strategy⇒ Top-down parser
- ► Complexity Metrics⇒ MaxTenure and SumSize

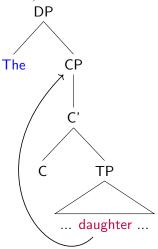
Degrees of freedom: Syntactic analyses

- 1 RC constructions \rightarrow (Kayne 1994)
- 2 Postverbal subjects → (Belletti & Leonini 2004)


Kayne's Promotion Analysis (Kayne 1994)

- ightharpoonup RC is selected by an external D^0
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

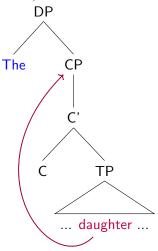
Kayne's Promotion Analysis (Kayne 1994)


- ► RC is selected by an external D⁰
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

[$_{DP}$ The [$_{CP}$ daughter $_i$ [that t_i was on the balcony]]]

Kayne's Promotion Analysis (Kayne 1994)

- ► RC is selected by an external D⁰
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]



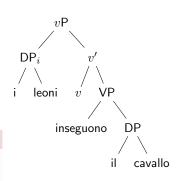
[$_{DP}$ The [$_{CP}$ daughter $_i$ [that t_i was on the balcony]]]

AG Parsing Italian RCs Gradience Conclusion

Kayne's Promotion Analysis (Kayne 1994)

- ► RC is selected by an external D⁰
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

[DP The [CP daughter_i [that t_i was on the balcony]]]

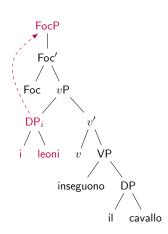

MG Parsing Italian RCs Gradience Conclusion

Postverbal Subjects (Belletti & Leonini 2004)

- (5) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole vP raises to Spec, TopP

Technical details!

an expletive pro is base generated in Spec.TP

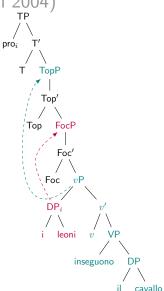

MG Parsing Italian RCs Gradience Conclusion

Postverbal Subjects (Belletti & Leonini 2004)

- (6) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole vP raises to Spec, TopP

Technical details!

an expletive pro is base generated in Spec TP

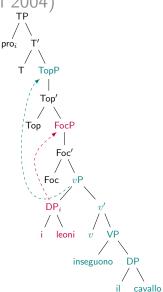


Postverbal Subjects (Belletti & Leonini 2004)

- (7) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole $v\mathsf{P}$ raises to Spec, TopP

Technical details!

an expletive pro is base generated in Spec.TP



Postverbal Subjects (Belletti & Leonini 2004)

- (7) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ▶ The whole vP raises to Spec,TopP

Technical details!

an expletive pro is base generated in Spec,TP

Modeling Results

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
"The horse that chased the lions"

SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
"The horse that the lions chased"

ORC

(4) Il cavallo che hanno inseguito i leoni The horse that have chased the lions "The horse that the lions chased"

ORCp

SRC > ORC > ORCp

Modeling Results

- (1) Il cavallo che ha inseguito i leoni
 The horse that has chased the lions
 "The horse that chased the lions"
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased

 "The horse that the lions chased"

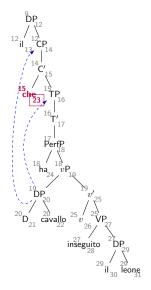
 ORC
- (4) Il cavallo che hanno inseguito i leoni
 The horse that have chased the lions
 "The horse that the lions chased"

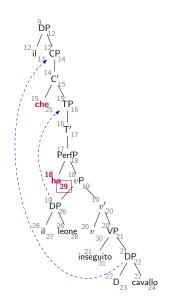
 ORCp

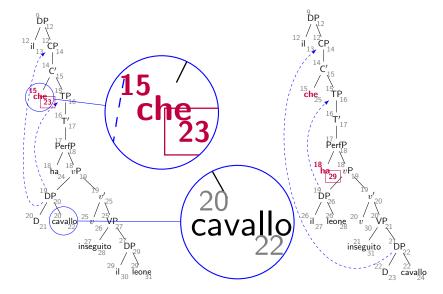
SRC

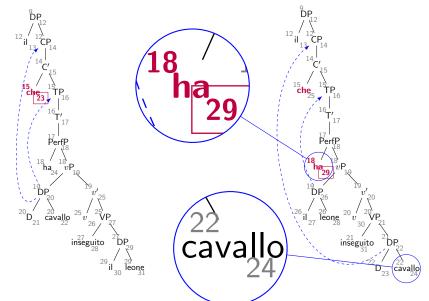
Modeling Results

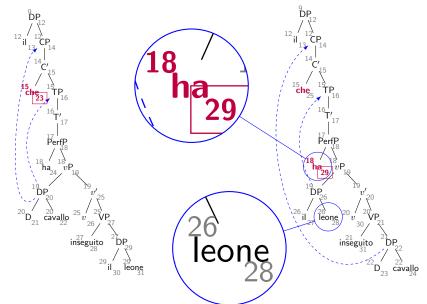
- (1) Il cavallo che ha inseguito i leoni
 The horse that has chased the lions


 "The horse that chased the lions"


 SRC
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased
 "The horse that the lions chased"


 ORC
- (4) Il cavallo che hanno inseguito i leoni
 The horse that have chased the lions
 "The horse that the lions chased"

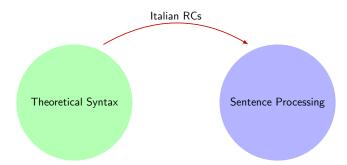

 ORCp


SRC > ORC > ORCp
 MaxTenure 8/che 11/ha 16/Foc
$$\checkmark$$

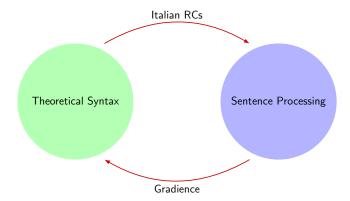
 SumSize 18 24 31 \checkmark

Summary of Results (De Santo 2019)

Clause Type	<maxtenure,sumsize></maxtenure,sumsize>
obj. SRC > ORC	✓
obj. $SRC > ORCp$	\checkmark
obj. $ORC > ORCp$	\checkmark
subj. SRC > ORC	✓
$subj.\ SRC > ORCp$	\checkmark
$subj.\ ORC > ORCp$	\checkmark
matrix SVO > VOS	√
$VS\ unacc > VS\ unerg$	✓


Table: Predictions of the MG parser by contrast.

MG Parsing Italian RCs Gradience Conclusion


Interim Summary

- Asymmetries in Italian postverbal subject constructions
 - Derived just from (fine-grained) structural differences!
 - Ongoing: expand range of syntactic analyses;
 - Ongoing: cross-linguistic comparisons.
- <MAXT,SUMS> gives consistent results!
 - Right vs. center embedding, attachment ambiguities, relative clause preferences
 - English, German, Korean, Japanese, Persian, Mandarin Chinese
 - ► More?

Moving on

Moving on

AG Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

1G Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

1G Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

Acceptability judgments ≈ Grammaticality judgments

Gradience in Acceptability Judgments

- 1 What do you think that John bought *t*?
- 2 *What do you wonder whether John bought t?

Gradience in Acceptability Judgments

- What do you think that John bought t?
- *What do you wonder whether John bought t?
- **3** Who *t* thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Gradience in Acceptability Judgments

- What do you think that John bought *t*?
- *What do you wonder whether John bought t?
- **3** Who *t* thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

1G Parsing Italian RCs Gradience Conclusion

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

1G Parsing Italian RCs Gradience Conclusion

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

AG Parsing Italian RCs Gradience Conclusion

Models of Gradience

(At least two) theories of gradience:

- ► Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- ▶ Gradience due to extra-grammatical factors (Chomsky 1975; Schutze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

MG Parsing Italian RCs Gradience Conclusion

Models of Gradience

(At least two) theories of gradience:

- ► Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- Gradience due to extra-grammatical factors (Chomsky 1975; Schutze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

AG Parsing Italian RCs Gradience Conclusion

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- ► OT-style constraint ranking
- ► Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schutze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

1G Parsing Italian RCs Gradience Conclusion

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- ► OT-style constraint ranking
- Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schutze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

MG Parsing Italian RCs Gradience Conclusion

Modeling Gradience with an MG Parser

The model is the same as before

- 1 A formal model of syntax \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built ightarrow MG parser
- 3 A linking theory: higher memory cost \Rightarrow lower acceptability
- Sensitive to fine-grained structural differences!
- Minimal, pairwise comparisons are maximally interpretable!

A proof-of-concept:

▶ Variation of Island effects in English (Sprouse et al. 2012)

1G Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- What do you wonder whether John bought t?
- Who t thinks that John bought a car?
- Who t wonders whether John bought a car?

1G Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- 1 What do you think that John bought *t*?
- What do you wonder whether John bought t?
- Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

Results in pairwise comparisons ideal for the MG parser

AG Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- What do you wonder whether John bought t?
- Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Non-Island — Embedded

Island — Embedded

Non-Island — Matrix

Island — Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

Results in pairwise comparisons ideal for the MG parser

MG Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- What do you wonder whether John bought t?
- Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Non-Island — Embedded

Island — Embedded

Non-Island — Matrix

Island — Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- 1 GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Jon Sprouse

Results in pairwise comparisons ideal for the MG parser

IG Parsing Italian RCs Gradience Conclusion

Sprouse at al. (2012)

ISLAND TYPES

Subject islands

► What do you think the speech about *t* interrupted the show about global warming?

Adjunct islands

▶ What do you laugh if John leaves t at the office?

Complex NP islands

▶ What did you make the claim that John bought t?

GAP POSITION × STRUCTURE

- Matrix vs. Embedded
- 2 Island vs. Non-Island

Modeling Results (De Santo 2020)

Island Type	Sprouse	et al.	(2012)	MG Parser
Subj. Island 1	Subj. — Non Isl.	>	Obj. — Non Isl.	✓
	Subj. — Non Isl.	>	Obj. — Isl.	✓
	Subj. — Non Isl.	>	Subj. — Isl.	✓
	Obj. — Non Isl.	>	Obj. — Isl.	✓
	Obj. — Non Isl.	>	Subj. — Isl.	✓
	Obj. — Isl.	>	Subj. — Isl.	×
	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	✓
Subi Island 2	Matrix — Non Isl.	>	Emb. — Isl.	✓
Subj. Island 2	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	✓
Adj. Island	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	✓
	Matrix — Non Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	✓
CNP Island	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	=	Matrix — Isl.	✓
	Matrix — Non Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	\checkmark

Modeling Results (De Santo 2020)

Island Type	Sprouse 6	et al.	(2012)	MG Parser
Subj. Island 1	Subj. — Non Isl.	>	Obj. — Non Isl.	✓
	Subj. — Non Isl.	>	Obj. — Isl.	✓
	Subj. — Non Isl.	>	Subj. — Isl.	✓
	Obj. — Non Isl.	>	Obj. — Isl.	✓
	Obj. — Non Isl.	>	Subj. — Isl.	✓
	Obj. — Isl.	>	Subj. — Isl.	×
Subj. Island 2	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	✓
	Matrix — Non Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	✓
Adj. Island	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	>	Matrix — Isl.	✓
	Matrix — Non Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	✓
CNP Island	Matrix — Non Isl.	>	Emb. — Non Isl.	✓
	Matrix — Non Isl.	=	Matrix — Isl.	✓
	Matrix — Non Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Emb. — Isl.	✓
	Matrix — Isl.	>	Matrix — Isl.	✓
	Emb. — Non Isl.	>	Emb. — Isl.	✓

TL;DR

Success in all cases but one!

Subject Island: Case 1

- (5) a. What do you think the speech interrupted t? Obj Non Island b. What do you think t interrupted the show? Subj Non Island
 - c. What do you think the speech about global warming interrupted the show about *t*? Obj Island
 - d. What do you think the speech about t interrupted the show about global warming?

 Subj Island

Sprouse et al. (2012)			MG Parser	Clause Type	MaxT	SumS
Subj. — Non Isl.	>	Obj. — Non Isl.	<u> </u>			
Subj. — Non Isl.	>	Obj. — Isl.	✓	Obj./Non Island	14/ <i>do</i>	19
Subj. — Non Isl.	>	Subj. — Isl.	✓	Subj./Non Island	11/do	14
Obj. — Non Isl.	>	Obj. — Isl.	✓	Obj./Island	23/ <i>T2</i>	22
Obj. — Non Isl.	>	Subj. — Isl.	\checkmark	Subj./Island	15/do	20
Obj. — Isl.	>	Subj. — Isl.	×	Subj./ Island	13/40	20

Subject Island: Case 1

- (5) a. What do you think the speech interrupted t? Obj Non Island b. What do you think t interrupted the show? Subj Non Island
 - c. What do you think the speech about global warming interrupted the show about *t*?

 Obj Island
 - d. * What do you think the speech about *t* interrupted the show about global warming?

 Subj Island

Sprouse et a	I. (2012)	MG Parser Clause Type	MaxT	SumS	
Subj. — Non Isl. >	Obj. — Non Isl.	$\overline{\hspace{1cm}}$			
Subj. — Non Isl. >	Obj. — Isl.	✓	Obj./Non Island	14/ <i>do</i>	19
Subj. — Non Isl. >	Subj. — Isl.	✓	Subj./Non Island	11/do	14
Obj. — Non Isl. >	Obj. — Isl.	✓	Obj./Island	23/ <i>T2</i>	22
Obj. — Non Isl. >	Subj. — Isl.	✓	Subj./Island	15/do	20
Obj. — Isl. >	Subj. — Isl.	×	Subj./Island	15/40	20

Subject Island: Case 2

(6) a. Who t thinks the speech interrupted the primetime TV show?

Matrix - Non Island

b. What do you think t interrupted the primetime TV show?

Emb. — Non Island

- c. Who t thinks the speech about global warming interrupted the primetime TV show?
 Matrix — Island
- d. What do you think the speech about *t* interrupted the primetime TV show?

primetime TV show? Emb. — Island

Sprouse et al. (2012)		MG Parser	Clause Type	MaxT	SumS			
	Matrix — Non Isl.	>	Emb. — Non Isl.	<u> </u>			541115	
	Matrix — Non Isl.	>	Matrix — Isl.	✓	Matrix — Non Isl.	5/ <i>C</i>	9	
	Matrix — Non Isl.	>	Emb. — Isl.	✓	Emb. — Non Isl.	11/do	14	
	Matrix — Isl.	>	Emb. — Isl.	✓	Matrix — Isl.	$11/T_{RC}$	9	
	Matrix — Isl.	>	Matrix — Isl.	✓	Emb. — Isl.	$17/T_{RC}$	20	
	Emb. — Non Isl.	>	Emb. — Isl.	✓	LIIID. 131.	II/IRC	20	

Summary

Gradience from a categorical MG grammar?

- ► The first (quantitative) model of this kind!
- ► Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints

The tip of the iceberg!

- ► Modulate range of dependencies
- ► Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- ► Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019; Hunter et al. 2019)

Summary

Gradience from a categorical MG grammar?

- ► The first (quantitative) model of this kind!
- Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- Modulate range of dependencies
- ▶ Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- ▶ Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019; Hunter et al. 2019)

Summary

Gradience from a categorical MG grammar?

- ► The first (quantitative) model of this kind!
- Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- ► Modulate range of dependencies
- ► Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- ► Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019; Hunter et al. 2019)

From the Trees (back) to the Forest

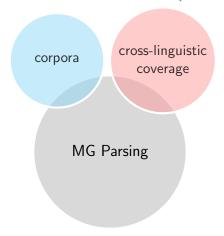
- ► Fully specified parsing model allows for precise predictions
- ► Tight connection with current generative syntax
- Successful on a variety of cross-linguistic constructions
- + insights about the structure of the grammar

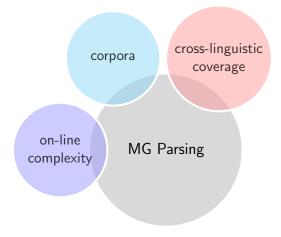
Not Just Theoretical Insights

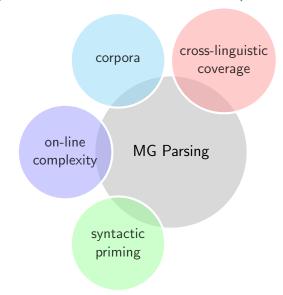
The human parser outperforms our fastest parsers

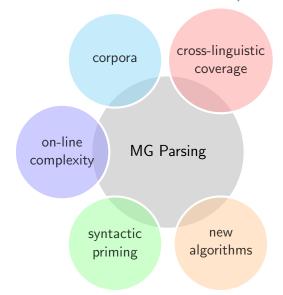
From the Trees (back) to the Forest

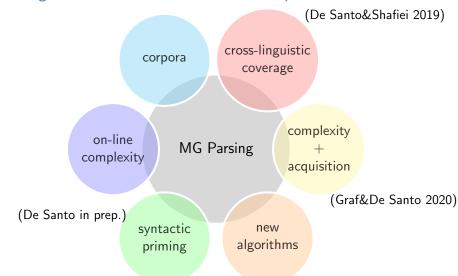



- ► Fully specified parsing model allows for precise predictions
- ► Tight connection with current generative syntax
- Successful on a variety of cross-linguistic constructions
- + insights about the structure of the grammar


Not Just Theoretical Insights!


► The human parser outperforms our fastest parsers

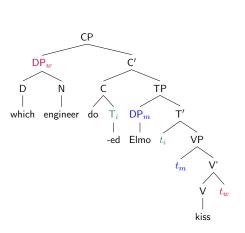


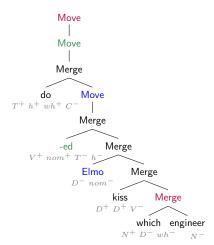


Selected References I

- Chomsky, N. (1995). The minimalist program. Cambridge, Mass.: MIT Press.
- De Santo, A. (2019). Testing a Minimalist gram- mar parser on Italian relative clause asymmetries. In Proceedings of CMCL 2019, June 6 2019, Minneapolis, Minnesota.
- De Santo, A. (2020). MG Parsing as a Model of Gradient Acceptability in Syntactic Islands. (To appear) In Proceedings of SCIL 2020, Jan 2-5, New Orleans.
- De Santo, A. and Shafiei, N. (2019). On the structure of relative clauses in Persian: Evidence from computational modeling and processing effects. *Talk at the NACIL2*, April 19-21 2019, University of Arizona.
- Graf, T. and Monette, J. and Zhang, C. (2017). Relative Clauses as a Benchmark for Minimalist Parsing. Journal of Language Modelling.
- Kobele, G.M., Gerth S., and Hale. J. (2012). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32–51. Springer.
- Sprouse, J., Wagers, M. and Phillips, C. (2012). A test of the relation between working-memory capacity and syntactic island effects. Language.
- 8 Stabler, E.P. (2013). Bayesian, minimalist, incremental syntactic analysis. Topics in Cognitive Science 5:611–633.
- 9 Stabler, E.P. (1997). Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retore, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.

Appendix


Why MGs?


- Vast analytical coverage
 - ▶ MGs handle virtually all analyses in the generative literature
- 2 Centrality of derivation trees
 - MGs can be viewed as CFGs with a more complicated mapping from trees to strings
- 3 Simple parsing algorithms
 - Variant of a recursive descent parser for CFGs ⇒ cf. TAG (Rambow & Joshi, 1995; Demberg, 2008)

Some Important Properties of MGs

- ▶ MGs are weakly equivalent to MCFGs and thus mildly context-sensitive. (Harkema 2001, Michaelis 2001)
- ▶ But we can decompose them into two finite-state components: (Michaelis et al. 2001, Kobele et al. 2007, Monnich 2006)
 - a regular language of well-formed derivation trees
 - an MSO-definable mapping from derivations to phrase structure trees
- ▶ Remember: Every regular tree language can be re-encoded as a CFG (with more fine-grained non-terminal labels). (Thatcher 1967)

Fully Specified Derivation Trees

Phrase Structure Tree

Derivation Tree

Technical Fertility of MGs

MGs can accommodate the full syntactic toolbox:

- sidewards movement (Stabler, 2006; Graf 2013)
- affix hopping (Graf 2012; Graf2013)
- clustering movement (Gartner & Michaelis 2010)
- tucking in (Graf 2013)
- ► ATB movement (Kobele 2008)
- copy movement (Kobele 2006)
- extraposition (Hunter &Frank 2014)
- ► Late Merge (Kobele 2010; Graf 2014)
- ► Agree (Kobele 2011; Graf 2011)
- adjunction (Fowlie 2013; Hunter 2015)
- ► TAG-style adjunction (Graf 2012)

Why These Metrics?

- ► These complexity metrics are all related to storage cost (cf. Gibson, 1998)
- ▶ We could implement alternative ones
 - (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...
- We want to keep the model simple (but not trivial)
 - ► Tenure and Size only refer to the geometry of the derivation
 - they are sensitive the specifics of tree-traversa (cf. node-count; Hale, 2001)

Why These Metrics?

- ► These complexity metrics are all related to storage cost (cf. Gibson, 1998)
- We could implement alternative ones
 - (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...
- ► We want to keep the model simple (but not trivial):
 - Tenure and Size only refer to the geometry of the derivation
 - they are sensitive the specifics of tree-traversal (cf. node-count; Hale, 2001)

Italian Subjects: Probing the Results

Clause Type	MaxT	SumS
obj. SRC	8/che	18
obj. ORC	$11/\mathit{ha}$	24
obj. ORCp	16/ <i>Foc</i>	31
subj. SRC	21/v'	37
subj. ORC	21/v'	44
subj. ORCp	28/v'	56
matrix SVO	3/ha/v'	7
matrix VOS	7/Top/Foc	11
VS unacc	2/vP	3
VS unerg	7/Top/Foc	11

Table: Summary of MAXT (value/node) and SUMS by construction. Obj. and subj. indicate the landing site of the RC head in the matrix clause.

Postverbal Asymmetries: Possible Accounts?

SRC > ORC

▶ DLT, active-filler strategy, Competition model, ...

ORC > ORCp

- more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

SRC > ORC

▶ DLT, active-filler strategy, Competition model, ...

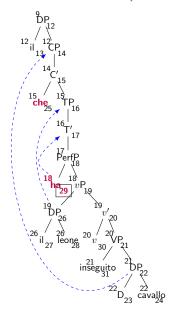
ORC > ORCp

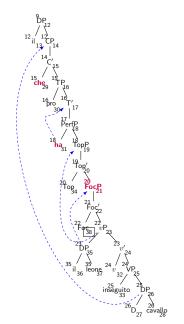
- more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

SRC > ORC


▶ DLT, active-filler strategy, Competition model, ...


ORC > ORCp

- more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Results: ORC > ORCp

Additional Constructions

► Ambiguity in Matrix Clauses

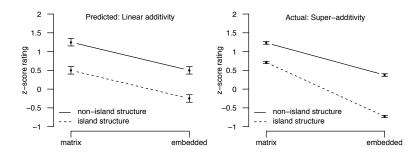
- (7) Ha chiamato Gio
 Has called Giovanni
 a. "He/she/it called Gio"
 - b. "Gio called"
- Unaccusatives vs. Unergatives
- (8) È arrivato Gio Is arrived Gio "Gio arrived"

(9) Ha corso Gio Has ran Gio

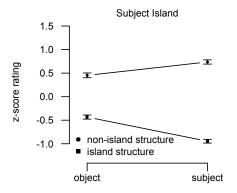
"Gio ran"

SVO

VS


Unaccusative

Unergative


Gradience in Islands

A factorial design for islands effect:

► GAP POSITION × STRUCTURE

Deriving Pairwise Comparisons

- ▶ Subj Non Island > Obj Non Island
- ▶ Subj Non Island > Obj Island
- ▶ Subj Non Island > Subj Island
- etc.

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

▶ Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se

- ► Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights
- Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

▶ Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ▶ Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

▶ Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ▶ Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics?

 (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

► Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ▶ Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

Subject Islands

Case 1:

- (10) a. What do you think the speech interrupted t? Obj Non Island
 - b. What do you think t interrupted the show? Subj Non Island
 - c. What do you think the speech about global warming interrupted the show about t?

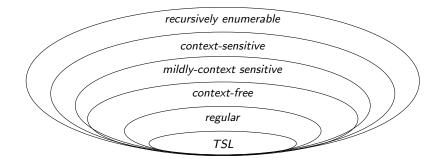
 Obj Island
 - d. What do you think the speech about t interrupted the show about global warming?

 Subj Island

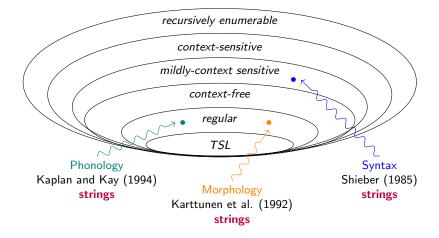
Case 2:

(11) a. Who t thinks the speech interrupted the primetime TV show?

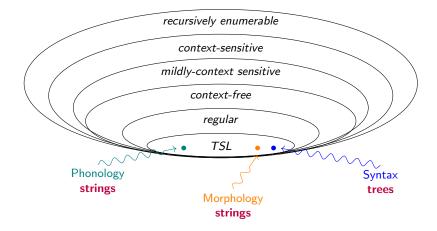
Matrix — Non Island


b. What do you think *t* interrupted the primetime TV show?

Emb. — Non Island


- c. Who t thinks the speech about global warming interrupted the primetime TV show?

 Matrix Island
- d. What do you think the speech about t interrupted the primetime TV show?
 Emb. Island


Subregular Complexity

Subregular Complexity

Subregular Complexity

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

- learnability
- cognition

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates ≥ 3 TPs
- learnability
- cognition

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates ≥ 3 TPs
- learnability
 Learnable from positive examples of strings/trees.
- cognition

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates ≥ 3 TPs
- learnability
 Learnable from positive examples of strings/trees.
- cognition Finite, flat memory