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Subregular Classes Cross-Fertilization Artificial Grammar Learning Conclusion

(Some) Big Questions

> Are there laws that govern linguistic knowledge?
> Why are those the laws?

» Do they relate to typological gaps, i.e.
logically possible patterns we don't (seem to) find?

» What can we infer about human learning processes?
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> Why are those the laws?

» Do they relate to typological gaps, i.e.
logically possible patterns we don't (seem to) find?

» What can we infer about human learning processes?

Cross-disciplinarity for the win

» Stand on the shoulders of giants.

» Cross-fertilization and multiple explanatory levels.
> Yields new generalizations and data.
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Precise Theories = Precise Predictions

recursively enumerable
context-sensitive
mildly-context sensitive .
context-free

regular

;\J
Phonology Morphology Syntax

Kaplan and Kay (1994) Karttunen et al. (1992) Shieber (1985)

Precise predictions for:

> typology — e.g. no center embedding in phonology

> learnability — e.g. no Gold learning for regular languages

» cognition — e.g. finitely bounded working memory



Conclusion

Artificial Grammar Learning

Cross-Fertilization

Subregular Classes

Classifying Patterns

"~ Context-sensitive
Yoruba copying

—_—
(Kobele, 2006)

" Mildly context-sensitive

i_‘_l_h\ \ Swiss German
S \ ']
cross dependencies

e
-
R (Shieber, 1985)

~ Context-free

English nested
dependencies
(Chomsky, 1956)

Navajo sibilant harmony
(Sapir and Hoijer, 1967)

Yawelmani Yokuts _ .
consonant clusters Pintupi stress
(Hansen and Hansen, 1969)

(Kisseberth, 1970)
Figure 1: The Chomsky Hierarchy. Various features of natural language occupy different regions of

the hierarchy. Figure reproduced from Figure 1in Heinz (2010: 634) with permission.




Subregular Classes Cross-Fertilization Artificial Grammar Learning Conclusion

Phonology as a Regular System
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Beyond Monolithic Classes: Subregular Languages
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Beyond Monolithic Classes: Subregular Languages
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» Multiple equivalent characterizations:
= algebraic, logic, automata. ..
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Phonology as a Subregular System

Subregular Phonotactics

» Majority of phonological patterns are subregular
(Heinz 2011a,b; Chandlee 2014; Graf 2017:a.0.).

Most  phonological and Regular
morphological rules corre- |
spond to p-subsequential SF
relations.
(Mohri 1997)
LTT
TSL LT PT
SL SP
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Phonology as a Subregular System

Subregular Phonotactics

» Majority of phonological patterns are subregular
(Heinz 2011a,b; Chandlee 2014; Graf 2017:a.0.).

Most  phonological and Regular
morphological rules corre- |
spond to p-subsequential SF
relations.
(Mohri 1997)
LTT
A caveat:
Mostly phonotactics today!
TSL LT PT
SL SP
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Local Dependencies in Phonology

Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer
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Conclusion

Local Dependencies in Phonology

Word-final devoicing

Forbid voiced segments at the end of a word
(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer

These patters can be described by strictly local (SL) constraints.
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Local Dependencies in Phonology are SL

Example: Word-final devoicing

» Forbid voiced segments at the end of a word: *[+voice]$
» German: *z$, *v$,*d$ ($ = word edge).

$rad$$ $ rat $

Example: Intervocalic voicing

> Forbid voicess segments in-between two vowels: *V[-voice]V

*

> German: *ase,

$ fasers$§ $ fazer$
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Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(3) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa/

Example: Samala

*$hasxintilawa/$

$ha[xintilawa[$

10
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Locality Over Tiers
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> Sibilants can be arbitrarily far away from each other!

» Problem: SL limited to locality domains of size n;
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Locality Over Tiers

*$stajanowonwa[$

> Sibilants can be arbitrarily far away from each other!

» Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

> Projection of selected segments on a tier T’
(Goldsmith 1976)

> Strictly local constraints over T determine
wellformedness

» Unbounded dependencies are local over tiers

11
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Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(4) a. *hasxintilawa/
b. * ha/xintilawas

c. ha/xintilawa/

» What do we need to project? [+strident]

» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]
ILE. *s[, "s3, "zf, "z3, “[s, 38, "[z, "3z

Example: TSL Samala

“$hasxintilaw]]$ °k$haxintilaw$
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Interim Summary: SL and TSL for Phonology

» Linguistically natural (Goldsmith 1976)

> Captures wide range of phonotactic dependencies
(McMullin 2016)

> Provably correct and efficient learning algorithms
(Jardine and McMullin 2017)

» Rules out unattested patterns
(cf. Lai 2015, Aksenova et al. 2016, Graf & De Santo 2019, a.o.)
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Interim Summary: SL and TSL for Phonology

» Linguistically natural (Goldsmith 1976)

> Captures wide range of phonotactic dependencies
(McMullin 2016)

> Provably correct and efficient learning algorithms
(Jardine and McMullin 2017)

» Rules out unattested patterns
(cf. Lai 2015, Aksenova et al. 2016, Graf & De Santo 2019, a.o.)

But:
> Typological variation is complex, knowledge is limited

» Can we truly gain cognitive insights?

13
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SL and TSL: So What?

Regular
SF
LTT
TSL LT PT
SL SP

> But not every long-distance pattern is TSL!
(McMullin 2016, Mayer & Major 2018, De Santo & Graf 2019)
15
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Concurrent Processes (De Santo and Graf, 2019)

Regular
SF
LTT
» TSL is not closed under
intersection
TSL LT PT
SL SP

> We want to also account for multiple processes
So we can cover the complete phonotactics of a language
» Multiple non-interacting processes in attested patterns
16
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A TSL Outlier

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

1) Underlying causative prefix /s(:)-/
Base  Causative
a. uga s-uga "be evacuated”
b. asitwa s-asitwa  "settle, be levelled”

17
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A TSL Outlier

Sibilant Harmony in IMDLAWN TASHLHIYT (McMullin2016)

1) Underlying causative prefix /s(:)-/
Base  Causative
a. uga s-uga "be evacuated”
b. asitwa s-asitwa  "settle, be levelled”

2) Sibilant harmony

Base Causative
a. fiafr |- fiafr "be full of straw, of discord”
b. nza zi-nza "be sold”

3) Sibilant voicing harmony blocked
Base Causative
a. ukz si-ukz "recognize”
b. quwszii [~ quzi "be dislocated, broken”

17
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Sibilant Harmony in IMDLAWN TASHLHIYT

Generalization (1/2)

Sibilants must agree in anteriority and voicing.

Grammar

T={3s 2/}
S ={*s3, *sz, *s[, *z3s,*[s, *zs, *z[, *z3, *[z, *[3, *3[, *32 }

*zm 3 d aw | %2 mi3 d aw |

18
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Sibilant Harmony in IMDLAWN TASHLHIYT

Generalization (2/2)

Voiceless obstruents block agreement in voicing.

Grammar

T={3s zf q}
S={ *sz, *sz, *sf, *z5.*[s, *zs, *z[, *z3, *Jz, *[3, * 5[, *32 }
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Multi-Tier Strictly Local (MTSL) Languages (1/2)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:
> Ty ={3 s z[ q} S1 ={"s3, "sz, *35, *zs, *[z, *[3, "3/}

Mfqou g
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Voiceless obstruents block agreement in voicing:
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Multi-Tier Strictly Local (MTSL) Languages (2/2)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

» Th={3 s 2/, a} S1={"s3 *sz, '35, *zs, *[z, *[3, "3[}
Unbounded agreement in anteriority:

> Ty =13, s, z[} So={*s3, *s[, *35,%[s, *zs, *z, *z3, *[z, *32 }

s g u 3z i
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Multi-Tier Strictly Local (MTSL) Languages (2/2)

Sibilant Harmony in IMDLAWN TASHLHIYT (Revisited)

Voiceless obstruents block agreement in voicing:

» Th={3 s 2/, a} S1={"s3 *sz, '35, *zs, *[z, *[3, "3[}
Unbounded agreement in anteriority:

> Ty =13, s, z[} So={*s3, *s[, *35,%[s, *zs, *z, *z3, *[z, *32 }

ok_ ___
okr - - 1 ¥ - - m - 1
1 .
S 93 'S 3
_____ lacacacaace-
T, " sibilant voicing T4+ sibilant anteriority

s g u 3z i
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Accounting for Concurrent Processes

> MTSL: TSL closure under intersection
(De Santo & Graf, 2019)

ok
okr 5 ! ok~ !
- |
‘J.Lg,:,,,g,',\ ‘J‘ 3 :
,,,,, I o e e e - —
T1 ¥ sibiiant voicing To': sibilant anteriority
J g u gz
ok
okr = v ! *mm oo w
| .
RIS I Ul 'S 3
,,,,, Lo e e e = —
T1 : sibilant voicing T, : sibilant anteriority
*s g u 3 i

> Intersection closure accounts for multiple concurrent processes

» Can characterize the complete phonotactics of a language
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A Plethora of Combination

REG

\
SF/DBSP

//

7
LT MTSL ITSL IBSP  PT

LTT

SL SP

> The goal is not identifying a single “correct” class

» Pinpoint fundamental properties of the patterns:
SL: «, TSL: <, ...
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Conclusion

A Plethora of Combination

REG
SF/D‘BSP
LTT //
MITSL
e

LT MTSL |ITSL IBSP PT

> The goal is not identifying a single “correct” class

» Pinpoint fundamental properties of the patterns:
SL: «, TSL: <, ...
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Cross-domain Parallels

recursively enumerable

context-sensitive
mildly-context sensitive
context-free

regular
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[ )
context-free

regular

Phonology : Syntax
Kaplan and Kay (1994) Shieber (1985)
strings Morphology strings
Karttunen et al. (1992)
strings
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recursively enumerable
context-sensitive
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context-free
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Phonology g/ Syntax
strings trees
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strings
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Conclusion

Subregular Syntax

Move
|

Merge
—_—
Move Merge
| —
Merge Move f
— |
Merge c Merge
A~ A\
ab d e

> Some results for syntax

> regular tree languages
(Michaelis 2004; Kobele et al. 2007)

> subregular operations (Graf 2018)

> subregular dependencies/constraints
(Laszakovits 2018; Vu et al. 2019)

> tree automata and parsing restrictions
(Graf & De Santo 19, lkawa et al. 20)
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Subregular Syntax

> Some results for syntax

> regular tree languages
(Michaelis 2004; Kobele et al. 2007)

> subregular operations (Graf 2018)

> subregular dependencies/constraints
(Laszakovits 2018; Vu et al. 2019)

> tree automata and parsing restrictions
(Graf & De Santo 19, lkawa et al. 20)
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Interim Summary: Again, So What?

Strong Parallelism

Subregular dependencies in phonology, (morphology), and syntax
subregular over their respective structural representations.

We gain a unified perspective on:
> Attested and unattested typology

> learnability?
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Interim Summary: Again, So What?

Strong Parallelism

Subregular dependencies in phonology, (morphology), and syntax
subregular over their respective structural representations.

We gain a unified perspective on:

> Attested and unattested typology
x Intervocalic Voicing iff applied an even times in the string
x Have a CP iff it dominates > 3 TPs

> learnability?
Learnable from positive examples of strings/trees.
Which information primitives are we sensitive to?

But:
» Typological variation is complex
» Qur knowledge of attested pattern is limited
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Outline

Artificial Grammar Learning
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Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)
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Conclusion

Subregular Classes Cross-Fertilization Artificial Grammar Learning

Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)

> Possible vs. impossible rules (Musso et al. 01, Culbertson 21)

» Child language acquisition (Nowal and Baggio 2017, a.0.)
— but careful with test sets (De Santo 2017)

» Animal cognition (Wilson et al. 2020, a.0.)
— cf. (De Santo and Rawski 2020)
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Testing Subregular Predictions

R | Monadic
egular Second-Order Logic
| U |
Locally ! ! First-Order
Threshold Testable —  >2Free Loge
o I I
g U ! U !
% Locally | Piecewise | Propositional
&|  Testable . Testable | | Logic
U 1 U 1
I I
Strictly TSL: Strictly ! Conjunction of
| Local . Piecewise| Negative Literals
~ : :
S/« ‘ < /<t ‘
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Conclusion

Artificial Grammar Learning

Subregular Classes Cross-Fertilization

Example: Attested vs. Unattested Patterns

Attested: Unbounded Sibilant Harmony

> Every sibilant needs to harmonize

“$hasxintilaw/[$ k¢hafxintilaw[$

Unattested: First-Last Harmony

» Harmony only holds between initial and final segments

_______________

k¢hasxintilaw[$ “¢satxintilaw/[$
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Lai (2015)

Linguistic

Learnable vs. Unlearnable
Harmony Patterns

Regine Lai

Posted Online July 09, 2015
https://doi org/101162/LING a 00188

© 2015 Massachusetts Institute of Technology
Linguistic Inquiry

Volume 46 | Issue 3 | Summer 2015
p.425-451

Keywords: phonotactics, learnability, computational phonology,
formal theory, typology, dependencies
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al Grammar Learning

Lai (2015): Stimuli

vFLY'SH
[sokosos]
i
[+anterior] [+anterior] [+anterior]

* FL x SH
[sokosof]
t

[+anterior] [+anterior] [-anterior]

[sokofos]
t

[+anterior] [-anterior] [+anterior]

v FL % SH

[fokosof]
t

[-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.
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Lai (2015): Stimuli

nmar Learning

vFLY'SH
[sokosos]
t

[+anterior] [+anterior] [+anterior]

* FL x SH
[sokosof]
t

[+anterior] [+anterior] [-anterior]

[sokofos]
t

[+anterior] [-anterior] [+anterior]

v FL % SH

[fokosof]
t

[-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.

Table 6

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH

(e.g,[s...J...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...0D [s...s...0D [s...5...8D)
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

Conclusi
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Lai (2015): Results

0.8

0.7

0.6

0.5

Rate of choosing FL/SH

0.4

03

Table 6

FL/SH vs. *FL/*SH

*Hk

vex 063

4

62

Control FL SH

nmar Learning

FL/*SH vs. *FL/*SH

Rate of choosing FL/*SH

Control

FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH
(e.g,[s...5...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control
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al Grammar Learning

Lai (2015): Results

FL/SH vs. *FL/*SH

0.8

a a2t FL/*SH vs. *FL/*SH
07 e 063 062 -

: 3

206 2

2

o

] E

5 05 §

<

H 5

3 04 -

= H
03 &

Control  FL SH Control  FL SH

Table 6

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs
FL/*SH vs. *FL/*SH FL/SH vs. *FL/*SH FL/SH vs. FL/*SH
(e.g,[s...5...8]vs. (eg,[s...s...8]vs. (e.g,[s...s...s]vs.
[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

> See Avcu and Hestvik (2020), Avcu et al. (2019) for replications
35
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A Plethora of Testable Predictions

> Attested patterns A and B are TSL.
» But combined pattern A+B is not TSL.

» A-+B should be harder to learn than A and B
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Example: Compounding Markers

Morphotactics as Tier-Based Strictly Local Dependencies

Aléna Aksénova Thomas Graf Sedigheh Moradi

» Russian has an infix -o- that may occur between
parts of compounds.

» Turkish has a single suffix -st that occurs at end
of compounds.

(5) vod -o- voz -o- VOZ
water -COMP- carry -COMP- carry

‘carrier of water-carriers’

(6) tirk bahge kapr -s1 (*-s1)
turkish garden gate -coMP (*-comP)
‘Turkish garden gate’

37
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Example: Compounding Markers [cont.]

» Russian and Turkish are TSL.

Tier; coMP affix and stem edges #
Russian n-grams oo, %0, 0%
Turkish n-grams sisi, $si, si#

» The combined pattern would yield Ruskish: stem”*!-si”

» This pattern is not regular and hence not TSL either.

Testable Predictions

> Can naive subjects learn Russian-like, Turkis-like, and
Ruskish-like compounding?

38



Conclusion

Outline

B Summing Up & Future Directions
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Of Black Swans and Flying Pigs
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Of Black Swans and Flying Pigs

> Not a single data point, but classes of phenomena

> Value of restrictive theories: predictive and explanatory

> We learn from falsifying them too!

40



Artificial Grammar Learning Conclusion

Subregular Classes Cross-Fertilization

Complexity as a Magnifying Lens

» We can compare patterns and predictions across classes

> We can also compare patterns within a same class

Proceedings of the Society for Computation in Linguistics

Volume 1 Article 8

2018

Formal Restrictions On Multiple Tiers

1§

Alena Aksenova
Stony Brook University, alena.aksenova@stonybrook.edu

Sanket Deshmukh
Stony Brook University, sanket.deshmukh@stonybrook.edu
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Testing Harmony Systems

Reminder:

» MTSL's multiple-tier idea...

k - k
oK™ T T ! ok-———~—~ |
Jra 3 s
Ty “sibilant voicing T4 '+ sibilant anteriority
Joq u gz
ok
" - | -7 . I * T T T I
RAR NI S __ %]
Ty sibilant voicing T+ sibilant anteriority
*s g u 3 i

Conclusion

disjoint contained

intersecting

Figure 2: Theoretically possible tier alphabet relations
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Conclusion

Testing Harmony Systems (cont.)

disjoint contained

intersecting

Figure 2: Theoretically possible tier alphabet relations

Imdlawn Tashlhiyt Kikongo

1004 ~°° disjoint
------ set-subset
—— incomparable
107
10°
10°
10t
10° 10!

Figure 7: Growth of number of partitions of sets containing up
to 20 elements (loglog scale)
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Learnability Generalizations

Learning Interactions of Local and Non-Local Phonotactic Constraints
from Positive Input

Aniello De Santo Aléna Aksénova
Dept. of Linguistics Google NYC
University of Utah alenaks@google.com

aniello.desantofutah.edu

> Efficiently learn MITSL3 grammars from positive data

Unlearnable Patterns

» No overlapping tiers with the same *p;po restriction
e.g. T1 = {a, b, C}, T2 = {a, b, d}, Gl = Gg = {*ab}

> This is predicted from the structure of the grammar
(see also Lambert et al. 2021)
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Subregular Classes Cross-Fertilization

From Blackbox to Blackbox

Multi-Element Long Di D

Artificial Grammar Learning

Using SPk L to

Explore the Characteristics of Long-Distance Dependencies

Abhijit Mahalunkar
Applied Intelligence Research Center
Technological University Dublin
Dublin, Ireland
abhijit.mahalunkar@mydit.ie

> Strictly-piecewise Languages

> Basically: Skip-gram models

> Capture long distance
dependencies over strings

» Modulate parameters of
variation:
e.g., length of the dependency,
alphabet size, etc.

John D. Kelleher
ADAPT Research Center
Technological University Dublin
Dublin, Ireland
john.d.kelleher@dit.ie

: s

Mutual Information, I(X,Y)
8

10— SP220
— sP2100
1010 | —— SP2200
— sP2500

10° 10t

Distance between two symhols D(X.Y)

Figure 3: LDD characteristics of datasets of SP2 gram-
mar exhibiting LDDs of length 20, 100, 200 and 500.
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Theory Building

The problem that we cannot deduce [...] theories from
data is a limitation, or perhaps an attribute, of all em-
pirical science [...] Still, one may abduce hypotheses [...]
Abduction is reasoning from observations |[...] It con-
sists of two steps: generating candidate hypotheses (ab-
duction proper), and selecting the “best” explanatory one
(inference to the best explanation).

(van Roji & Baggio 2020, pg. 9)
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Conclusion

A Collaborative Enterprise!

Learnability

a7



Thank you!

Mathematical Linguistics and Cognitive Complexity
Aniello De Santo, Jonathan Rawski
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From Blackbox to Blackbox

Multi-Element Long Distance Dependencies: Using SPk Languages to
Explore the Characteristics of Long-Distance Dependencies

Abhijit Mahalunkar John D. Kelleher
Applied Intelligence Research Center ADAPT Research Center
Technological University Dublin Technological University Dublin
Dublin, Ireland Dublin, Ireland

abhijit.mahalunkar@mydit.ie john.d.kelleher@dit.ie
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Example: Circumfixation in Indonesian

» Indonesian has circumfixation with no upper bound on
the distance between the two parts of the circumfix.

(7) maha siswa (8) *(ke-) maha siswa *(-an)
big  pupil NMN- big  pupil -NMN
‘student’ ‘student affairs’

P> Requirements: exactly one ke- and exactly one -an
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Example: Circumfixation in Indonesian

» Indonesian has circumfixation with no upper bound on
the distance between the two parts of the circumfix.

(7) maha siswa (8) *(ke-) maha siswa *(-an)
big  pupil NMN- big  pupil -NMN
‘student’ ‘student affairs’

P> Requirements: exactly one ke- and exactly one -an

Tier; contains all NMN affixes $ an ke ke $
Tierp contains all morphemes . |
n-grams $an, ke$, keke, anan $ an m s ke ke $
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Example: Swahili vyo

Swahili vyo is either a prefix or a suffix,
depending on presence of negation. (7)

(9) a. a- vi- soma -vyo
SBJ:CL.1- OBJ:CL.8- read -REL:CL.8
‘reads’
b. a- si-  vyo- vi- soma

SBJ:CL.1- NEG- REL:CL.8&- read -OBJ:CL.8
‘doesn’t read’
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Example: Swahili vyo [cont.]

(10) a. *a- vyo- vi- soma
SBJ:CL.1- REL:CL.8- OBJ:CL.8- read

b. *a- vyo- vi- soma -vyo
SBJ:CL.1- REL:CL.8- OBJ:CL.8- read -REL:CL.8

c. *a- si-  vyo- vi- soma
SBJ:CL.1- NEG- REL:CL.8- OBJ:CL.8- read
-vVyo
REL:CL.8-

d *a- si-  vi- soma -vyo

SBJ:CL.1- NEG- OBJ:CL.8- read REL:CL.&-
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Example: Swabhili vyo [cont.]

Generalizations About vyo

> may occur at most once

» must follow negation prefix si- if present

> is a prefix iff si- is present

Tier; contains vyo, si, and stem edges #
Tiery contains all morphemes
n-grams vyovyo, vyo##vyo “at most one vyo'
VYOSsi, VYO##si “vyo follows si"
si##vyo, Svyo## “vyo is prefix iff si present”



TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(11) a.  LHLLLL
b.  LLLLHL
c. *LHLLHL
d.  LHHHHL
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TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(11) a.  LHLLLL
b.  LLLLHL
c. *LHLLHL
d.  LHHHHL

'LHL LH

*LHLLHL
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Defining Tier Projection
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label of segment TSL
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Input-Sensitive TSL (ITSL) Languages

Defining Tier Projection

Tier projection controlled by: EL
1+2
label of segment ~—
& TSL

A local context 1
TSL languages are characterized by:

» a l-local projection function;

> strictly k-local constraints applied on T.
Idea:

> Projection is an input-strictly local transduction Chandlee

2015)

» What if: the locality of E7 was higher than 17
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> Project every H; project L iff immediately follows H
» Ban: HLH
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Testing Predictions with AGL

> [t is a powerful technique

» We must be careful in drawing inferences from laboratory
behavior

» Importantly: Common fallacies in experimental design
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The Fallacy of Generalization

> Imagine we want to test the ability to learn long-distance
dependencies:

,,,,,,,,,,,,

» Assuming an alphabet ¥ = {a, b, ¢, d, €}, the training samples
could look like the following:

Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . . . }

What happens if we test on stimuli with similar distances?
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The Fallacy of Generalization

> Imagine we want to test the ability to learn long-distance
dependencies:

,,,,,,,,,,,,

» Assuming an alphabet ¥ = {a, b, ¢, d, €}, the training samples
could look like the following:
Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . . . }

What happens if we test on stimuli with similar distances?
Lyiest = {abcad, abcad, bacda, abcea, . .. }



Picking the Right Primitives

Long-distance relations?



Picking the Right Primitives

Long-distance relations?

> Stimuli are often ambiguous between overlapping classes

P Distinguishing between representation requires care



The Set/Subset Problem: Case 1

» Can participants learn a"b"?

» We must beware of a™b"

aaaabb ambn

b

aabb

ab
aaaabbbb

aaabbb

a™b”



References Limits of AGL

Evaluating Contrasts

Developmental Constraints on Learning Artificial
Grammars with Fixed, Flexible and Free Word Order

Iga Nowak'?and ' Giosué Baggio?™
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Nowak and Baggio (2017): Results
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Complexity Measures and Other Issues (De Santo, 2017)
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The Set/Subset Problem: Case 2

» Can participants learn a truly free-word order language?
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