
Mathematical Linguistics & Cognitive Complexity

Aniello De Santo

aniellodesanto.github.io
aniello.desanto@utah.edu

@AnyDs

NTNU
May 24, 2022

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

▶ Are there laws that govern linguistic knowledge?
▶ Why are those the laws?
▶ Do they relate typological gaps?
▶ (How) are the reflected in human cognitive processes?
▶ What can we infer about linguistic representations?

Cross-disciplinarity for the win

▶ Stand on the shoulders of giants.
▶ Cross-fertilization and multiple explanatory levels.
▶ Yields new generalizations and data.

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

▶ Are there laws that govern linguistic knowledge?
▶ Why are those the laws?
▶ Do they relate typological gaps?
▶ (How) are the reflected in human cognitive processes?
▶ What can we infer about linguistic representations?

Cross-disciplinarity for the win

▶ Stand on the shoulders of giants.
▶ Cross-fertilization and multiple explanatory levels.
▶ Yields new generalizations and data.

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Computational Theories of Language
Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•

1

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Computational Theories of Language
Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•

1

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Precise Theories ⇒ Precise Predictions
recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•

Precise predictions for:

▶ typology → e.g. no center embedding in phonology
▶ learnability → e.g. no Gold learning for regular languages
▶ cognition?

2

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton

Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

3

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Phonology as a Regular System

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

4

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Beyond Monolithic Classes: Subregular LanguagesLogical Definability of Subregular Classes

Regular

Monadic
Second-Order Logic

Locally

Threshold Testable

Star Free

First-Order
Logic

Locally

Testable

Piecewise

Testable

Propositional
Logic

Strictly

Local

Strictly

Piecewise

Conjunction of
Negative Literals

S// < //+

⇢ ⇢
⇢⇢

⇢

⇢

TSL⇢

co
m
p
lexity

1▶ Multiple equivalent characterizations:
algebraic, logic, automata...

5

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Beyond Monolithic Classes: Subregular LanguagesLogical Definability of Subregular Classes

Regular

Monadic
Second-Order Logic

Locally

Threshold Testable

Star Free

First-Order
Logic

Locally

Testable

Piecewise

Testable

Propositional
Logic

Strictly

Local

Strictly

Piecewise

Conjunction of
Negative Literals

S// < //+

⇢ ⇢
⇢⇢

⇢

⇢

TSL⇢

co
m
p
lexity

1▶ Multiple equivalent characterizations:
algebraic, logic, automata...

5

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up

6

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

▶ What would a computational linguist tell you?
Well, it depends!

▶ What will I show you?
They are fundamentally similar!

The Take-Home Message

▶ Two kind of dependencies: local and non-local
▶ The core mechanisms are the same cross-domain
▶ That is: linguistic dependencies are local over the right

structural representations

7

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

▶ What would a computational linguist tell you?
Well, it depends!

▶ What will I show you?
They are fundamentally similar!

The Take-Home Message

▶ Two kind of dependencies: local and non-local
▶ The core mechanisms are the same cross-domain
▶ That is: linguistic dependencies are local over the right

structural representations

7

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

▶ What would a computational linguist tell you?
Well, it depends!

▶ What will I show you?
They are fundamentally similar!

The Take-Home Message

▶ Two kind of dependencies: local and non-local
▶ The core mechanisms are the same cross-domain
▶ That is: linguistic dependencies are local over the right

structural representations

7

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels between Phonology and Syntax

1 Local Dependencies
▶ In Phonology
▶ In Syntax

2 Non-local Dependencies
▶ In Phonology
▶ In Syntax

A methodological note:

▶ Only phonotactics considered (no input-output mappings)
▶ Minimalist Grammars (Stabler 1997) as a model of syntax
▶ Formal language theory as a tool to assess parallelisms

8

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels between Phonology and Syntax

1 Local Dependencies
▶ In Phonology
▶ In Syntax

2 Non-local Dependencies
▶ In Phonology
▶ In Syntax

A methodological note:

▶ Only phonotactics considered (no input-output mappings)
▶ Minimalist Grammars (Stabler 1997) as a model of syntax
▶ Formal language theory as a tool to assess parallelisms

8

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology

1 Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. * rad
b. rat

1 Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. * faser
b. fazer

These patters can be described by strictly local (SL) constraints.

9

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology

1 Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. * rad
b. rat

1 Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. * faser
b. fazer

These patters can be described by strictly local (SL) constraints.

9

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

▶ Forbid voiced segments at the end of a word: ∗[+voice]$
▶ German: ∗z$, ∗v$,∗d$ ($ = word edge).

$ r a d $

∗

$ r a t $

ok

Example: Intervocalic voicing

▶ Forbid voicess segments in-between two vowels: ∗V[-voice]V
▶ German: ∗ase, ∗ise, ∗ese, ∗isi, . . .

$$ f a s e r $

∗

$$ f a z e r $

ok

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

▶ Forbid voiced segments at the end of a word: ∗[+voice]$
▶ German: ∗z$, ∗v$,∗d$ ($ = word edge).

$ r a d $∗ $ r a t $ok

Example: Intervocalic voicing

▶ Forbid voicess segments in-between two vowels: ∗V[-voice]V
▶ German: ∗ase, ∗ise, ∗ese, ∗isi, . . .

$$ f a s e r $

∗

$$ f a z e r $

ok

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

▶ Forbid voiced segments at the end of a word: ∗[+voice]$
▶ German: ∗z$, ∗v$,∗d$ ($ = word edge).

$ r a d $∗ $ r a t $ok

Example: Intervocalic voicing

▶ Forbid voicess segments in-between two vowels: ∗V[-voice]V
▶ German: ∗ase, ∗ise, ∗ese, ∗isi, . . .

$$ f a s e r $∗ $$ f a z e r $ok

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

What about Syntax?

We need a model for syntax ...

▶ Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)

▶ Operations: Merge and Move
▶ Adopt Chomsky-Borer hypothesis:

Grammar is just a finite list of feature-annotated lexical items

Local dependencies in syntax

▶ Merge is a feature-driven operation:
category feature N−, D−, ...
selector feature N+, D+, ...

▶ Subcategorization as formalized by Merge is strictly local.

11

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

What about Syntax?

We need a model for syntax ...

▶ Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)

▶ Operations: Merge and Move
▶ Adopt Chomsky-Borer hypothesis:

Grammar is just a finite list of feature-annotated lexical items

Local dependencies in syntax

▶ Merge is a feature-driven operation:
category feature N−, D−, ...
selector feature N+, D+, ...

▶ Subcategorization as formalized by Merge is strictly local.

11

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
▶ category feature N−, D−, ...
▶ selector feature N+, D+, ...

’s cat
N−N+ D+ D−

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
▶ category feature N−, D−, ...
▶ selector feature N+, D+, ...

Merge

cat’s
N−N+ D+ D−

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
▶ category feature N−, D−, ...
▶ selector feature N+, D+, ...

Merge

cat’s

Mary
D−

N−N+ D+ D−

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
▶ category feature N−, D−, ...
▶ selector feature N+, D+, ...

Merge

Merge

cat’s

Mary
D−

N−N+ D+ D−

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge is SL (Graf 2012)
Merge

Merge

the’s

Mary
D−

D−N+ D+ D−

SL constraints on Merge

▶ We lift constraints from string
n-grams to tree n-grams

▶ We get SL constraints over
subtrees.

∗Merge

ba
¬X−X+ D−

13

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge is SL (Graf 2012)
Merge

Merge

the’s

Mary
D−

D−N+ D+ D−

SL constraints on Merge

▶ We lift constraints from string
n-grams to tree n-grams

▶ We get SL constraints over
subtrees.

∗Merge

ba
¬X−X+ D−

13

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Data Structure
Phonology ? ?
Syntax ? ?

Local phenomena modeled by n-grams of bounded size:
▶ computationally very simple
▶ learnable from positive examples of strings/trees
▶ plausible cognitive requirements

14

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Data Structure
Phonology SL Strings
Syntax SL Trees

Local phenomena modeled by n-grams of bounded size:
▶ computationally very simple
▶ learnable from positive examples of strings/trees
▶ plausible cognitive requirements

14

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Non-local Data Structure
Phonology SL ? Strings
Syntax SL ? Trees

Local phenomena modeled by n-grams of bounded size:
▶ computationally very simple
▶ learnable from positive examples of strings/trees
▶ plausible cognitive requirements

14

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies in Phonology
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)

(3) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(4) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

15

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Locality Over Tiers

$ s t a j a n o w o n w a S $∗

▶ Sibilants can be arbitrarily far away from each other!
▶ Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

▶ Projection of selected segments on a tier T;
▶ Strictly local constraints over T determine wellformedness;
▶ Unbounded dependencies are local over tiers.

17

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Locality Over Tiers

$ s t a j a n o w o n w a S $∗

▶ Sibilants can be arbitrarily far away from each other!
▶ Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

▶ Projection of selected segments on a tier T;
▶ Strictly local constraints over T determine wellformedness;
▶ Unbounded dependencies are local over tiers.

17

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s

S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

Example

∗L H L L H L

L H L L H L

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

Example

∗L H L L H L

L H L L H L

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

Example

∗L H L L H L

L H L L H L

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

Example

∗L H L L H L

L H L L H L

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

Example

∗L H L L H L

L H L L H L

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H

L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H

L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L

H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L

H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H

L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example

okL H L L L L

H L

∗L H L L H L

H L H L

▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Non-Local Dependencies in Syntax

Let’s stick to core operations:
▶ Move
▶ Merge?

Merge

Merge

cat’s

Mary
D−

N−N+ D+ D−

21

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Non-Local Dependencies in Syntax
Let’s stick to core operations:
▶ Move
▶ Merge: Unbounded adjunction

Frey and Gärtner (2002); Graf (2017)

Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

21

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL over Trees: Projecting Tiers

Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary

Merge

cat

Merge

Mary

D−

N−

N+ D+ D−

N−

D−

22

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL over Trees: Projecting Tiers

Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat

Merge

Mary

D−

N−

N+ D+ D− N−

D−

22

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL over Trees: Projecting Tiers

Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat

Merge

Mary
D−

N−

N+ D+ D− N−

D−

22

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary

Merge

D−

N−

N+ D+ D−

A TSL grammar for Merge

1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary

Merge

D−

N−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)

2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge
D−

N−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)

2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary

∗Merge

D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = V)
2 Project any node which has X− (e.g. X = V)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = V)
2 Project any node which has X− (e.g. X = V)
3 No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology ? ?
Syntax ? ?

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology SL ?
Syntax SL ?

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology SL TSL
Syntax SL TSL

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local Data Structure
Phonology SL TSL Strings
Syntax SL TSL Trees

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local Data Structure
Phonology SL TSL Strings
Syntax SL TSL Trees

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird’s-Eye View of the Framework

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

TSL

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird’s-Eye View of the Framework

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

TSL
Phonology

Kaplan and Kay (1994)
strings

•

Syntax
Shieber (1985)

strings

•

Morphology
Karttunen et al. (1992)

strings

•

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird’s-Eye View of the Framework

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

TSL

Phonology
strings

•

Syntax
trees

•

Morphology
strings

•

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Refining the Hierarchy via Typological Insights
Regular

SF

LTT

LT

SL

PT

SP

TSL

MTSLITSL

MITSL

▶ The goal is not identifying a single “correct” class
▶ Pinpoint fundamental properties of the patterns:

SL: ◁ , TSL: ◁T, etc

26

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntax beyond Merge and Move

▶ regular tree languages
(Michaelis 2004; Kobele et al. 2007)

▶ subregular operations (Graf 2018)
▶ subregular dependencies/constraints

(Vu et al. 2019; Shafiei and Graf 2019)
▶ tree automata and parsing restrictions

(Graf & De Santo 2020)

27

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:
▶ Attested and unattested typology

× Intervocalic Voicing iff applied an even times in the string
× Have a CP iff it dominates ≥ 3 TPs

▶ learnability?

Learnable from positive examples of strings/trees.

▶ cognition

?

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:
▶ Attested and unattested typology

× Intervocalic Voicing iff applied an even times in the string
× Have a CP iff it dominates ≥ 3 TPs

▶ learnability?

Learnable from positive examples of strings/trees.

▶ cognition

?

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:
▶ Attested and unattested typology

× Intervocalic Voicing iff applied an even times in the string
× Have a CP iff it dominates ≥ 3 TPs

▶ learnability?
Learnable from positive examples of strings/trees.

▶ cognition

?

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:
▶ Attested and unattested typology

× Intervocalic Voicing iff applied an even times in the string
× Have a CP iff it dominates ≥ 3 TPs

▶ learnability?
Learnable from positive examples of strings/trees.

▶ cognition ?

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up

29

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

▶ Can be used to test implicit learning abilities (Reber, 1976)

30

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

▶ Can be used to test implicit learning abilities (Reber, 1976)

31

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

▶ Can be used to test implicit learning abilities (Reber, 1976)

32

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Reber (1976)

▶ Stimuli generated from an FST or randomly
▶ 28 sentences per group, in sets of four sentences each
▶ Participants asked to reproduce the sentences in a group
▶ Participants informed of correct/incorrect reproductions, but

not of error type
33

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Reber (1976) [cont.]

▶ Stimuli generated from an FST or randomly
▶ Significant differences between learning trajectories across

participant group 34

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Subregular Predictions
Logical Definability of Subregular Classes

Regular

Monadic
Second-Order Logic

Locally

Threshold Testable

Star Free

First-Order
Logic

Locally

Testable

Piecewise

Testable

Propositional
Logic

Strictly

Local

Strictly

Piecewise

Conjunction of
Negative Literals

S// < //+

⇢ ⇢
⇢⇢

⇢

⇢
TSL⇢

co
m
p
lexity

1

35

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Example: Attested vs. Unattested Patterns

Attested: Unbounded Sibilant Harmony

▶ Every sibilant needs to harmonize

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

Unattested: First-Last Harmony

▶ Harmony only holds between initial and final segments

ok $h a s x i n t i l a w S $

s S

∗ $ s a t x i n t i l a w S $

s S

36

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015)

37

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Stimuli

Avcu and Hestvik: Unlearnable phonotacticsArt. 56, page 8 of 22

long-distance harmony patterns with an artificial grammar learning paradigm and tested
whether SH or FL can be learned by adult participants in a laboratory setting. Three
experimental groups were tested (SH, FL, and a control group with no training phase).
The two test groups underwent two phases: a training phase and a testing phase. The SH
group was trained by listening to words that conformed to an SH grammar, and the FL
group was trained by listening to words that conformed to an FL grammar. The control
group received no training. In the test, a two-alternative forced-choice (2AFC) task was
used. Participants had to judge whether the first word or the second word of a pair were
more likely to belong to the artificial language they had previously been exposed to.
Participants in the control condition (which were not given a training phase) were simply
asked to judge whether they thought the first or the second word of each pair was a better
candidate for a possible word. All participants were given the same test stimuli.

The results of Lai’s study showed that the experimental group that was trained on the
SH pattern preferred the words following the SH rule over the ones that violated it. Thus,
the SH rule was learned by the participants. On the other hand, the FL participants did
not show any preference for the FL rule — they did not perform significantly better than
the control group. This suggests that FL grammars are indeed unlearnable. Interestingly,
Lai also observed that the FL group showed a preference for stimuli that conformed to the
SH pattern, i.e. a bias towards SH-conforming words. Lai speculated that they may have
learned the SH pattern from the FL stimuli. A possible explanation for this is that anything
that violates FL also violates SH, and anything that conforms to SH also conforms to FL,
cf. Figure 3.

Therefore, given the same experimental setting and the same amount of training, the FL
group appeared to learn SH grammar when exposed to FL stimuli. To address this potential
SH bias, Lai designed a follow-up experiment in which the FL participants were trained
with stimuli that conformed only to the FL pattern. Thus, the [s.s.s] and [ʃ.ʃ.ʃ] type of
words was excluded from the training set, leaving only the [s.ʃ.s] and [ʃ.s.ʃ] type of words.
The results of this follow-up experiment showed that when participants were trained with
these “intensive” FL (henceforth “IFL”) stimuli, they preferred the stimuli that conformed
only to the IFL pattern. In other words, after removing the ambiguous stimuli, the IFL
group internalized a sibilant disharmony rule which requires each neighboring sibilant to
be disharmonic. Lai (2015) concluded that the sum of the experiments indicated that SH,
not FL was learned. These results were consistent with the hypothesis that the phonologi-
cal learner is restricted by sub-regular constraints to learn SH, but not FL.

Figure 3: Comparison of SH and FL stimuli.

38

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Stimuli

Avcu and Hestvik: Unlearnable phonotacticsArt. 56, page 8 of 22

long-distance harmony patterns with an artificial grammar learning paradigm and tested
whether SH or FL can be learned by adult participants in a laboratory setting. Three
experimental groups were tested (SH, FL, and a control group with no training phase).
The two test groups underwent two phases: a training phase and a testing phase. The SH
group was trained by listening to words that conformed to an SH grammar, and the FL
group was trained by listening to words that conformed to an FL grammar. The control
group received no training. In the test, a two-alternative forced-choice (2AFC) task was
used. Participants had to judge whether the first word or the second word of a pair were
more likely to belong to the artificial language they had previously been exposed to.
Participants in the control condition (which were not given a training phase) were simply
asked to judge whether they thought the first or the second word of each pair was a better
candidate for a possible word. All participants were given the same test stimuli.

The results of Lai’s study showed that the experimental group that was trained on the
SH pattern preferred the words following the SH rule over the ones that violated it. Thus,
the SH rule was learned by the participants. On the other hand, the FL participants did
not show any preference for the FL rule — they did not perform significantly better than
the control group. This suggests that FL grammars are indeed unlearnable. Interestingly,
Lai also observed that the FL group showed a preference for stimuli that conformed to the
SH pattern, i.e. a bias towards SH-conforming words. Lai speculated that they may have
learned the SH pattern from the FL stimuli. A possible explanation for this is that anything
that violates FL also violates SH, and anything that conforms to SH also conforms to FL,
cf. Figure 3.

Therefore, given the same experimental setting and the same amount of training, the FL
group appeared to learn SH grammar when exposed to FL stimuli. To address this potential
SH bias, Lai designed a follow-up experiment in which the FL participants were trained
with stimuli that conformed only to the FL pattern. Thus, the [s.s.s] and [ʃ.ʃ.ʃ] type of
words was excluded from the training set, leaving only the [s.ʃ.s] and [ʃ.s.ʃ] type of words.
The results of this follow-up experiment showed that when participants were trained with
these “intensive” FL (henceforth “IFL”) stimuli, they preferred the stimuli that conformed
only to the IFL pattern. In other words, after removing the ambiguous stimuli, the IFL
group internalized a sibilant disharmony rule which requires each neighboring sibilant to
be disharmonic. Lai (2015) concluded that the sum of the experiments indicated that SH,
not FL was learned. These results were consistent with the hypothesis that the phonologi-
cal learner is restricted by sub-regular constraints to learn SH, but not FL.

Figure 3: Comparison of SH and FL stimuli.

38

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Results

▶ See Avcu and Hestvik (2020), Avcu et al. (2019) for replications
39

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Results

▶ See Avcu and Hestvik (2020), Avcu et al. (2019) for replications
39

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Full Results

40

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Predictions with AGL

▶ It is a powerful technique
▶ Careful in drawing inferences from laboratory behavior
▶ Importantly: Common fallacies in experimental design

41

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Predictions with AGL

▶ It is a powerful technique
▶ Careful in drawing inferences from laboratory behavior
▶ Importantly: Common fallacies in experimental design

41

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalizability in AGL
A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

ab
aabb

aaabbb

aaaabbbb

a

b

abb aab

aaaabb

aabbbb

abbbaaab

ambn

anbn

42

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalizability in AGL
A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

ab
aabb

aaabbb

aaaabbbb

a

b

abb aab

aaaabb

aabbbb

abbbaaab

ambn

anbn

42

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs

(SL)

▶ Strings are all of even length

(REG)

▶ |w|A = |w|B

(CF)

▶ ...
Picking the right contrasts is essential!

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)
▶ ...

Picking the right contrasts is essential!

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)
▶ ...

Picking the right contrasts is essential!

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (2/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB ABABAB

44

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (3/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB AABBB

45

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (4/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB AABBBB

46

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (5/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs: ABA (SL)
▶ Strings are all of even length: AABBB (REG)
▶ |w|A = |w|B: ABAB (CF)

▶ finite bound
▶ ...

AAABBB AAAABBBB

47

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (5/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs: ABA (SL)
▶ Strings are all of even length: AABBB (REG)
▶ |w|A = |w|B: ABAB (CF)
▶ finite bound
▶ ...

AAABBB AAAABBBB

47

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives
Long-distance relations?

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

Z a: e r s e
∗

Z a: e r S e
ok

▶ Stimuli are often ambiguous between overlapping classes
▶ Distinguishing between representation requires care

48

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives
Long-distance relations?

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

Z a: e r s e
∗

Z a: e r S e
ok

▶ Stimuli are often ambiguous between overlapping classes
▶ Distinguishing between representation requires care

48

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
▶ Questions of complexity confounded by representations
▶ Questions of representations confounded by procedures

49

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
▶ Questions of complexity confounded by representations
▶ Questions of representations confounded by procedures

49

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntactic Expressivity

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

cross-serial dependencies

nested dependencies

▶ cross-serial preferred over nested (Bach et al. 1986)
▶ against predictions from the CH?

(Chesi & Moro 2014; de Vries et al. 2012)

50

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntactic Expressivity

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

cross-serial dependencies

nested dependencies

▶ cross-serial preferred over nested (Bach et al. 1986)
▶ against predictions from the CH?

(Chesi & Moro 2014; de Vries et al. 2012)

50

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Expressivity vs. Procedures

▶ cross-serial preferred over nested (Bach et al. 1986)
▶ against predictions from the CH?

(Chesi & Moro 2014; de Vries et al. 2012)
▶ BUT: this can easily be derived via processing mechanisms

(Savitch 1989; Joshi, 1990; Rainbow and Joshi,1994)
▶ recognition complexity requires a precise theory of parsing cost

51

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]

q0 q1
b, a/ϵ

a, ϵ/a b, a/ϵ

▶ AnBn does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

▶ Same for the language of strings of well-nested parentheses
▶ Phrase-structure analyses often depend on distinctions based

on the meaning of the strings

Complicated questions:
▶ What representations are relevant?
▶ How are they connected to tasks?
▶ How do we probe them?

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]

q0 q1
b, a/ϵ

a, ϵ/a b, a/ϵ

▶ AnBn does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

▶ Same for the language of strings of well-nested parentheses
▶ Phrase-structure analyses often depend on distinctions based

on the meaning of the strings

Complicated questions:
▶ What representations are relevant?
▶ How are they connected to tasks?
▶ How do we probe them?

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]

q0 q1
b, a/ϵ

a, ϵ/a b, a/ϵ

▶ AnBn does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

▶ Same for the language of strings of well-nested parentheses
▶ Phrase-structure analyses often depend on distinctions based

on the meaning of the strings

Complicated questions:
▶ What representations are relevant?
▶ How are they connected to tasks?
▶ How do we probe them?

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]

q0 q1
b, a/ϵ

a, ϵ/a b, a/ϵ

▶ AnBn does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

▶ Same for the language of strings of well-nested parentheses
▶ Phrase-structure analyses often depend on distinctions based

on the meaning of the strings

Complicated questions:
▶ What representations are relevant?
▶ How are they connected to tasks?
▶ How do we probe them?

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up

53

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregularity Across Modules

TSL

Phonotactics Morphotactics

Morphosemantics
Syntax

non-final RHOL

UTP

first-last harmony

unbounded circumfixation

unbounded reduplication

monomorphemic quantifiers

Merge & Move

Loweringc-command

54

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell
Generalized Quantifiers and Semantic Complexity
Semantic automata (SA) as a model of quantifiers’ verification
▶ insights into quantifiers’ interpretation
▶ link between formal language theory and model theory

Beyond the SA perspective

▶ Formal language theory is richer that automata theory
▶ Coming back to formal language theory

→ subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
▶ complexity independent of the recognition mechanism
▶ cross-domain parallels, cognitive predictions, ...

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell
Generalized Quantifiers and Semantic Complexity
Semantic automata (SA) as a model of quantifiers’ verification
▶ insights into quantifiers’ interpretation
▶ link between formal language theory and model theory

Beyond the SA perspective

▶ Formal language theory is richer that automata theory
▶ Coming back to formal language theory

→ subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
▶ complexity independent of the recognition mechanism
▶ cross-domain parallels, cognitive predictions, ...

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell
Generalized Quantifiers and Semantic Complexity
Semantic automata (SA) as a model of quantifiers’ verification
▶ insights into quantifiers’ interpretation
▶ link between formal language theory and model theory

Beyond the SA perspective

▶ Formal language theory is richer that automata theory
▶ Coming back to formal language theory

→ subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
▶ complexity independent of the recognition mechanism
▶ cross-domain parallels, cognitive predictions, ...

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalized Quantifiers
Generalized quantifier Q(A,B):
▶ two sets A and B as arguments
▶ returns truth value (0, 1)

Example

(8) Every student cheated.

▶ every(A,B) = 1 iff A ⊆ B
▶ student: John, Mary, Sue
▶ cheat: John, Mary
▶ student ̸⊆ cheat ⇒ every(student, cheat) = 0
▶ “Every student cheated” is false.

56

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Binary Strings
▶ The language of A is the set of all permutations of A.

Example
student John, Mary, Sue

L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

▶ Now replace every a ∈ A by a truth value:
1 if a ∈ B
0 if a /∈ B

▶ The result is the binary string language of A under B.
Example

student John, Mary, Sue
cheat John, Mary

binary strings 110, 101, 011

57

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Binary Strings
▶ The language of A is the set of all permutations of A.

Example
student John, Mary, Sue

L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

▶ Now replace every a ∈ A by a truth value:
1 if a ∈ B
0 if a /∈ B

▶ The result is the binary string language of A under B.
Example

student John, Mary, Sue
cheat John, Mary

binary strings 110, 101, 011

57

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)
▶ We can associate each quantifier Q with a language in {0, 1}∗

⇒ Q accepts only binary strings of specific shape
▶ This is its quantifier language.

Example: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

Example: some

▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ Some element of A must be mapped to 1.
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

58

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)
▶ We can associate each quantifier Q with a language in {0, 1}∗

⇒ Q accepts only binary strings of specific shape
▶ This is its quantifier language.

Example: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

Example: some

▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ Some element of A must be mapped to 1.
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

58

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)
▶ We can associate each quantifier Q with a language in {0, 1}∗

⇒ Q accepts only binary strings of specific shape
▶ This is its quantifier language.

Example: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

Example: some

▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ Some element of A must be mapped to 1.
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

58

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Semantic Automata (van Benthem 1986, Mostowski 1998)
We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.

59

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Aristotelian Quantifiers are FSA-recognizable
Reminder: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

q0start q1
0

1 0

1

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

True
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111

60

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Aristotelian Quantifiers are FSA-recognizable
Reminder: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

q0start q1
0

1 0

1

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

True
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111

60

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Other FSA-recognizable quantifiers

▶ Parity quantifiers: An even number

q0start q1

1

0
1

0

▶ Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0

1

61

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Proportional Quantifiers

▶ most(A, B) holds iff |A ∩ B| > |A − B|
▶ Lmost := {w ∈ {0, 1}∗ : |1|w > |0|w}
▶ There is no finite automaton recognizing this language.
▶ We need internal memory.

⇒ push-down automata: two states + a stack

62

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some, Even, Odd, At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity?

63

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some, Even, Odd, At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity?

63

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Let’s Look at the Automata One More Time
▶ Aristotelian quantifiers: Some

q0start q1
1

0 0

1

▶ Parity quantifiers: An even number

q0start q1

1

0
1

0

▶ Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0

1

64

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

▶ Cyclic vs acyclic automata
▶ The number of states matters
▶ But: Complexity = succinctness of automata?

Reminder
It’s all grounded in quantifier languages
▶ FSA recognizable quantifiers → Regular quantifier languages

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

▶ Cyclic vs acyclic automata
▶ The number of states matters
▶ But: Complexity = succinctness of automata?

Reminder
It’s all grounded in quantifier languages
▶ FSA recognizable quantifiers → Regular quantifier languages

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

▶ Cyclic vs acyclic automata
▶ The number of states matters
▶ But: Complexity = succinctness of automata?

Reminder
It’s all grounded in quantifier languages
▶ FSA recognizable quantifiers → Regular quantifier languages

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

▶ Cyclic vs acyclic automata
▶ The number of states matters
▶ But: Complexity = succinctness of automata?

Reminder
It’s all grounded in quantifier languages
▶ FSA recognizable quantifiers → Regular quantifier languages

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉
T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉
T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉

F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉

F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉

F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉

F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉

T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉
T

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉
FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉
FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉

F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉

F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉

F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉

F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉
F

T

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗00

0 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗00

0 ??

⋊ 0 0

0n

1 ⋉
F

T

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗000

??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗000

??

⋊ 0 0

0n

1 ⋉

F

T

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar

∗0

00

??

⋊ 0

0

0n 0 ⋉

F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar

∗0

00

??

⋊ 0

0

0n 1 ⋉

FT

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0

00n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n0

1

0n0

⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0

00n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n0

1

0n0

⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0

00n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n0

1

0n0

⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉

F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉

F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉

F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉

F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊

1

⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊

1

⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉

T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0 0

0n

0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊

0n

0 1

0n

0 ⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar T = {1}
S = {∗⋊⋉}

⋊ 0

0

0n 0 ⋉

⋊ ⋉F

True
student John, Mary, Sue

cheat John,
binary strings 100, 010, 001

grammar T = {1}
S = {∗⋊⋉}

⋊ 0n

0

1 0n

0

⋉

⋊ 1 ⋉T

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
FT

F 1 1 1 1 1

1 1 1 1 1
FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
FT

F 1 1 1 1 1

1 1 1 1 1
FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
FT

F 1 1 1 1 1

1 1 1 1 1
FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1

F

T 1 1 1 1 0

1 1 1 1

FT

F 1 1 1 1 1

1 1 1 1 1

FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
F

T

F 1 1 1 1 1

1 1 1 1 1
F

TF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1

F

T

F 1 1 1 1 1

1 1 1 1 1

F

T

F

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1

F

T

F 1 1 1 1 1

1 1 1 1 1

FT

F

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1

F

T

F 1 1 1 1 1

1 1 1 1 1

FT

F

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Characterization of Quantifier Languages (Graf 2019)

Language Constraint Complexity Subregular Grammar
every |0|w = 0 SL-1 S := {¬0}

no |1|w = 0 SL-1 S := {¬1}
some |1|w ≥ 1 TSL-2 T := {1}, S := {¬⋊⋉}

not all |0|w ≥ 1 TSL-2 T := {0}, S := {¬⋊⋉}
(at least) n |1|w ≥ n TSL-(n + 1) T := {1}, S :=

{
¬⋊ 1k⋉

}
k≤n

(at most) n |1|w ≤ n TSL-(n + 1) T := {1}, S :=
{
¬1k+1}

all but n |0|w = n TSL-(n + 1) T := {0}, S :=
{
¬0n+1,¬⋊ 0k⋉

}
k≤n

even number |1|w = 2n, n ≥ 0 regular impossible
most |1|w ≥ |0|w context-free impossible

70

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Complexity Hierarchy (Revisited)
▶ Semantic Automata predictions

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

▶ Subregular characterization predictions

{All} < {Some, At least n, At most n} < {Even, Odd} < {Less than half, More than half, Most}

SL TSL REG CF

Automata vs Quantifier Languages

▶ complexity independent of the specific recognition machine
▶ what’s the cognitive reality of these predictions?

71

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Complexity Hierarchy (Revisited)
▶ Semantic Automata predictions

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

▶ Subregular characterization predictions

{All} < {Some, At least n, At most n} < {Even, Odd} < {Less than half, More than half, Most}

SL TSL REG CF

Automata vs Quantifier Languages

▶ complexity independent of the specific recognition machine
▶ what’s the cognitive reality of these predictions?

71

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Mechanisms and Descriptive Models

Automata theoretic classes seem to presuppose [...] spe-
cific classes of recognition mechanisms, raising questions
about whether these are necessarily relevant to the cogni-
tive mechanisms under study.
Descriptive characterizations focus on the nature of the
information about the properties of a string (or structure)
that is needed in order to distinguish those which exhibit
a pattern from those which do not.
What one can conclude is that whatever the actual mech-
anism is it must be sensitive to the kind of information
that characterizes the descriptive class.

Rogers & Pullum 2011

72

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Conclusion
▶ Many questions!

▶ Laws underlying linguistics knowledge?
▶ How complex are they?
▶ Why are those the laws?
▶ (How) are they reflected in behavior?

▶ Interplay of theory and data:
▶ new typological claims
▶ deeper understanding of formalism through data
▶ new empirical questions
▶ unification of diverse data points
▶ direct ties to cognition/processing/learnability

Careful!
It’s just another tool. We need to be explicit about the questions
that we are asking and the connections we postulate!

73

Selected References I
Applegate, R.B. 1972. Ineseno chumash grammar. Doctoral Dissertation, University of

California,Berkeley.
Avcu, Enes, and Arild Hestvik. 2020. Unlearnable phonotactics. Glossa: a journal of

general linguistics 5.
De Santo, Aniello, and Thomas Graf. 2017. Structure sensitive tier projection:

Applications and formal properties. Ms., Stony Brook University.
De Santo, Aniello, Thomas Graf, and John E. Drury. 2017. Evaluating subregular

distinctions in the complexity of generalized quantifiers. Talk at the ESSLLI
Workshop on Quantifiers and Determiners (QUAD 2017), July 17 – 21, University
of Toulouse, France.

Frey, Werner, and Hans-martin Gärtner. 2002. On the treatment of scrambling and
adjunction in minimalist grammars. In In Proceedings, Formal Grammar?02.
Citeseer.

Graf, Thomas. 2012. Locality and the complexity of Minimalist derivation tree
languages. In Formal Grammar 2010/2011, ed. Philippe de Groot and Mark-Jan
Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227.
Heidelberg: Springer. URL
http://dx.doi.org/10.1007/978-3-642-32024-8_14.

Graf, Thomas. 2017. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53. URL http://ling.auf.net/lingbuzz/003943, (to
appear).

http://dx.doi.org/10.1007/978-3-642-32024-8_14
http://ling. auf.net/lingbuzz/003943

Selected References II

Graf, Thomas. 2018. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53, ed. Daniel Edmiston, Marina Ermolaeva, Emre Hakgüder,
Jackie Lai, Kathryn Montemurro, Brandon Rhodes, Amara Sankhagowit, and
Miachel Tabatowski, 117–136.

Graf, Thomas. 2019. A subregular bound on the complexity of lexical quantifiers. In
Proceedings of the 22nd Amsterdam Colloquium, ed. Julian J. Schlöder, Dean
McHugh, and Floris Roelofsen, 455–464.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local
constraints in phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 58–64. URL
http://www.aclweb.org/anthology/P11-2011.

Hyman, Larry M. 2011. Tone: Is it different? The Handbook of Phonological Theory,
Second Edition 197–239.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to Minimalism. In Model Theoretic Syntax at 10, ed.
James Rogers and Stephan Kepser, 71–80.

Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic Inquiry
46:425–451.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Electronic
Notes in Theoretical Computer Science 53:192–209.

http://www.aclweb.org/anthology/P11-2011

Selected References III

Shafiei, Nazila, and Thomas Graf. 2019. The subregular complexity of syntactic
islands. Ms., Stony Brook University.

Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford
handbook of linguistic Minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford
University Press.

Vu, Mai Ha, Nazila Shafiei, and Thomas Graf. 2019. Case assignment in TSL syntax:
A case study. In Proceedings of the Society for Computation in Linguistics (SCiL)
2019, ed. Gaja Jarosz, Max Nelson, Brendan O’Connor, and Joe Pater, 267–276.

References

Of Black Swans and Flying Pigs

▶ Not a single data point, but classes of phenomena
▶ Value of restrictive theories: predictive and explanatory
▶ We learn from falsifying them too!

References

Of Black Swans and Flying Pigs

▶ Not a single data point, but classes of phenomena
▶ Value of restrictive theories: predictive and explanatory
▶ We learn from falsifying them too!

References

Of Black Swans and Flying Pigs

▶ Not a single data point, but classes of phenomena
▶ Value of restrictive theories: predictive and explanatory
▶ We learn from falsifying them too!

References

A Plethora of Testable Predictions

Observation
▶ Attested patterns A and B are TSL.
▶ But combined pattern A+B is not TSL.

Prediction
▶ A+B should be harder to learn than A and B

References

A Plethora of Testable Predictions

Observation
▶ Attested patterns A and B are TSL.
▶ But combined pattern A+B is not TSL.

Prediction
▶ A+B should be harder to learn than A and B

References

Example: Compounding Markers

▶ Russian has an infix -o- that may occur between
parts of compounds.

▶ Turkish has a single suffix -sI that occurs at end
of compounds.

(9) vod
water

-o-
-comp-

voz
carry

-o-
-comp-

voz
carry

‘carrier of water-carriers’
(10) türk

turkish
bahçe
garden

kapI

gate
-sI

-comp
(∗-sI)
(∗-comp)

‘Turkish garden gate’

References

Example: Compounding Markers [cont.]
▶ Russian and Turkish are TSL.

Tier1 comp affix and stem edges #
Russian n-grams oo, o, o
Turkish n-grams sisi, $si, si#

▶ The combined pattern would yield Ruskish: stemn+1-sin
▶ This pattern is not regular and hence not TSL either.
▶ Hypothesis (Aksenova et al, 2016)

If a language allows unboundedly many compound affixes,
they are infixes.

Testable Predictions
▶ Can naive subjects learn Russian-like, Turkis-like, and

Ruskish-like compounding?

References

Complexity as a Magnifying Lens

▶ We can compare patterns and predictions across classes
▶ We can also compare patterns within a same class

References

Testing Harmony Systems

▶ We can also account for multiple processes
▶ Thus we can cover the complete phonotactics of a language

∗ s q u ÿ: i

ok s q ÿ:
ok

∗
s ÿ:

T2 : sibilant anteriorityT1 : sibilant voicing

S q u ÿ: i

ok
ok

S q ÿ: ok
S ÿ:

T2 : sibilant anteriorityT1 : sibilant voicing

3 Types of multiple feature spreadings

In many languages, long-distance agreement pro-
cesses involve spreading of more than one feature.
The choice of items involved in a harmonic process,
as well as of the harmonizing feature, varies a lot
from language to language. For example, in many
systems, vowel harmony in a feature such as back-
ness (TURKISH, FINNISH) or tongue root position
(MONGOLIAN, BURYAT) co-exists with labial as-
similation, see (Kaun, 1995) for numerous examples
of such vowel harmonies. Or it can be sibilant har-
mony in two features such as anteriority and voic-
ing (NAVAJO, TUAREG). Also, in several languages
it is possible to find both consonantal and vowel
harmonies in features such as nasality and height
(KIKONGO, KIYAKA, BUKUSU).

Further we show that in some cases, one TSL
grammar is enough (Case 1) – it is possible to en-
force both harmonic spreadings over a single tier.
Another possibility is containment, and it is attested
as well (Case 2) – there are languages in which one
spreading affects a subset of items involved in an-
other spreading. In some languages, harmonies af-
fect two separate sets of segments, and the intersec-
tion of these two sets is empty (Case 3) – such tier
alphabets are disjoint. And the only relation that ap-
pears to be typologically unattested is non-empty in-
tersection (Case 4): to the best of our knowledge,
there are no harmonies that affect two sets of ele-
ments that only partially overlap.

For the details and properties of the class of Mul-
tiple TSL (MTSL) languages, see (De Santo, 2017).
We would like to highlight that this current work is
preliminary, and the provided data and generaliza-

disjoint contained

intersecting

Figure 2: Theoretically possible tier alphabet relations

tions are drawn to the best of our knowledge.

3.1 Case 1: single tier

Many harmonies with multiple feature spreadings
can be captured with a single tier-based strictly local
grammar. This does not mean that undergoers and
blockers are the same for both harmonies, it only
means that none of the items taking part in one har-
mony is irrelevant for the other one.

Consider YAKUT (Turkic) as an example of such
configuration. In this language, all vowels must
agree in fronting. However, labial harmony spreads
from low vowels onto both low and high ones, from
high vowels to high ones, but it cannot spread from
high vowels to low ones. The latter ones, in this
case, function as harmonizing blockers: they inherit
[round] specification from any preceding vowel, but
block the rounding assimilation in [+high][–high]
configuration, see (Sasa, 2001; Sasa, 2009).

The accusative affix -(n)ü, -(n)u, -(n)1, -(n)i with a
high vowel and the plural marker -lor, -lör, -lar, -ler
with a non-high vowel demonstrate this pattern, see
examples (5-12) below from (Kaun, 1995).

(5) oGo-lor ‘child-PL’ *oGo-lar
(6) börö-lör ‘wolf-PL’ *börö-ler
(7) oGo-nu ‘child-ACC’ *oGo-n1

(8) börö-nü ‘wolf-ACC’ *börö-ni

(9) murum-u ‘nose-ACC’ *murum-1
(10) tünnük-ü ‘window-ACC’ *tünnük-i
(11) ojum-lar ‘shaman-PL’ *ojum-lor
(12) tünnük-ler ‘window-PL’ *tünnük-lör

Within a word, all vowels must share the same
[tense] specification (5-12). High suffixal vowels
agree with any preceding vowel in rounding (7-10),
whereas low vowels can only inherit rounding fea-
ture from preceding low vowel (5,6), otherwise they
are realized as non-rounded (11,12).

The tier alphabet T of TSL grammar that cap-
tures YAKUT pattern consists of all vowels presented
in the language. Hfront rules out sequences of
vowels that disagree in fronting, whereas the part
of the grammar responsible for the labial harmony
(Hr1 [Hr2 [Hr3) blocks occurrence of a rounded
low vowel if it is preceded by a high one, and also
any other combination of vowels that disagree in
their labial features. The obtained TSL grammar op-

66

References

Testing Harmony Systems (cont.)

3 Types of multiple feature spreadings

In many languages, long-distance agreement pro-
cesses involve spreading of more than one feature.
The choice of items involved in a harmonic process,
as well as of the harmonizing feature, varies a lot
from language to language. For example, in many
systems, vowel harmony in a feature such as back-
ness (TURKISH, FINNISH) or tongue root position
(MONGOLIAN, BURYAT) co-exists with labial as-
similation, see (Kaun, 1995) for numerous examples
of such vowel harmonies. Or it can be sibilant har-
mony in two features such as anteriority and voic-
ing (NAVAJO, TUAREG). Also, in several languages
it is possible to find both consonantal and vowel
harmonies in features such as nasality and height
(KIKONGO, KIYAKA, BUKUSU).

Further we show that in some cases, one TSL
grammar is enough (Case 1) – it is possible to en-
force both harmonic spreadings over a single tier.
Another possibility is containment, and it is attested
as well (Case 2) – there are languages in which one
spreading affects a subset of items involved in an-
other spreading. In some languages, harmonies af-
fect two separate sets of segments, and the intersec-
tion of these two sets is empty (Case 3) – such tier
alphabets are disjoint. And the only relation that ap-
pears to be typologically unattested is non-empty in-
tersection (Case 4): to the best of our knowledge,
there are no harmonies that affect two sets of ele-
ments that only partially overlap.

For the details and properties of the class of Mul-
tiple TSL (MTSL) languages, see (De Santo, 2017).
We would like to highlight that this current work is
preliminary, and the provided data and generaliza-

disjoint contained

intersecting

Figure 2: Theoretically possible tier alphabet relations

tions are drawn to the best of our knowledge.

3.1 Case 1: single tier

Many harmonies with multiple feature spreadings
can be captured with a single tier-based strictly local
grammar. This does not mean that undergoers and
blockers are the same for both harmonies, it only
means that none of the items taking part in one har-
mony is irrelevant for the other one.

Consider YAKUT (Turkic) as an example of such
configuration. In this language, all vowels must
agree in fronting. However, labial harmony spreads
from low vowels onto both low and high ones, from
high vowels to high ones, but it cannot spread from
high vowels to low ones. The latter ones, in this
case, function as harmonizing blockers: they inherit
[round] specification from any preceding vowel, but
block the rounding assimilation in [+high][–high]
configuration, see (Sasa, 2001; Sasa, 2009).

The accusative affix -(n)ü, -(n)u, -(n)1, -(n)i with a
high vowel and the plural marker -lor, -lör, -lar, -ler
with a non-high vowel demonstrate this pattern, see
examples (5-12) below from (Kaun, 1995).

(5) oGo-lor ‘child-PL’ *oGo-lar
(6) börö-lör ‘wolf-PL’ *börö-ler
(7) oGo-nu ‘child-ACC’ *oGo-n1

(8) börö-nü ‘wolf-ACC’ *börö-ni

(9) murum-u ‘nose-ACC’ *murum-1
(10) tünnük-ü ‘window-ACC’ *tünnük-i
(11) ojum-lar ‘shaman-PL’ *ojum-lor
(12) tünnük-ler ‘window-PL’ *tünnük-lör

Within a word, all vowels must share the same
[tense] specification (5-12). High suffixal vowels
agree with any preceding vowel in rounding (7-10),
whereas low vowels can only inherit rounding fea-
ture from preceding low vowel (5,6), otherwise they
are realized as non-rounded (11,12).

The tier alphabet T of TSL grammar that cap-
tures YAKUT pattern consists of all vowels presented
in the language. Hfront rules out sequences of
vowels that disagree in fronting, whereas the part
of the grammar responsible for the labial harmony
(Hr1 [Hr2 [Hr3) blocks occurrence of a rounded
low vowel if it is preceded by a high one, and also
any other combination of vowels that disagree in
their labial features. The obtained TSL grammar op-

66

T1 = T2

T1 ⇢ T2 T1 \ T2 = ;

• •

•

Imdlawn Tashlhiyt Kikongo

Yakut

Figure 8: Attested tier alphabets relations

size n of tier alphabets that is relevant for natural
languages, and check which tier alphabet configu-
rations are available for each range of n. And, of
course, more careful typological overview is needed.

However, this result can be interesting from sev-
eral different perspectives. First, it reveals new typo-
logical generalization about harmonic systems and
natural languages in general. Secondly, it might
shed light on the issues related to the learnability
of multiple tier-based strictly local grammars. And,
lastly, it brings the desired naturalness to the theory
of formal languages.

Acknowledgments

We thank the anonymous referees for their useful
comments and suggestions. We are very grateful to
our friends and colleagues at Stony Brook Univer-
sity, especially to Thomas Graf, Lori Repetti, Jef-
frey Heinz, and Aniello De Santo for their unlimited
knowledge and constant help. Also big thanks to
Gary Mar, Jonathan Rawski, Sedigheh Moradi, and
Yaobin Liu for valuable comments on the paper. All
mistakes, of course, are our own.

References

Akinbiyi Akinlabi. 2009. Neutral vowels in lokaa har-
mony. Canadian Journal of Linguistics, 59(2):197–
228.

Alëna Aksënova, Thomas Graf, and Sedigheh Moradi.
2016. Morphotactics as tier-based strictly local depen-
dencies. In Proceedings of the 14th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 121–130.

Benjamin Ao. 1991. Kikongo nasal harmony and
context-sensitive underspecification. Linguistic In-
quiry, 22(1):193–196.

Jon Barwise and Robin Cooper. 1981. Generalized quan-
tifiers and natural language. Linguistics and Philoso-
phy, 4:159–219.

William G. Bennett. 2013. Dissimilation, Consonant
Harmony, and Surface Correspondence. Ph.D. thesis,
Rutgers University.

Aniello De Santo. 2017. Pushing the boundaries of tsl
languages. Manuscript. Stony Brook University.

Mohamed Elmedlaoui. 1995. Aspects des
représentations phonologiques dans certaines
langues chamito-sémitiques. Ph.D. thesis, Université
Mohammed V.

Thomas Graf and Jeffrey Heinz. 2015. Commonality
in disparity: The computational view of syntax and
phonology. Slides of a talk given at GLOW 2015,
April 18, Paris, France.

Gunnar Olafur Hansson. 2010a. Consonant Harmony:
Long-Distance Interaction in Phonology. University
of California Press, Los Angeles.

Gunnar Olafur Hansson. 2010b. Long-distance voic-
ing assimilation in berber: spreading and/or agree-
ment? In Proceedings of the 2010 annual confer-
ence of the Canadian Linguistic Association, Ottawa,
Canada. Canadian Linguistic Association.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics, pages
58–64, Portland, USA. Association for Computational
Linguistics.

Jeffrey Heinz. 2010. Learning long-distance phonotac-
tics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz. 2011. Computational phonology part II:
Grammars, learning, and the future. Language and
Linguistics Compass, 5(4):153–168.

Larry Hyman. 1998. Positional prominence and the
‘prosodic trough’ in yaka. Phonology, 15:14–75.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. Lec-
ture Notes in Computer Science, 10168:64–76.

Abigail Rhoades Kaun. 1995. The typology of round-
ing harmony: an optimality theoretic approach. Ph.D.
thesis, UCLA.

Edward L. Keenan and Jonathan Stavi. 1986. A semantic
characterization of natural language determiners. Lin-
guistics and Philosophy, 9:253–326.

Donald E. Knuth. 1968. Fundamental Algorithms.
Addison-Wesley, Reading, MA.

Kevin James McMullin. 2016. Tier-based locality in
long-distance phonotactics: learnability and typology.
Ph.D. thesis, University of British Columbia.

Willard O. Quine. 1969. Ontological relativity. In Onto-
logical relativity and other essays. Columbia Univer-
sity Press, New York.

72

of 2 sets with incomparable intersection that can be
obtained from a set with n elements:

3 ⇤ S(n, 3) = 1

2

3X

j=0

(�1)3�j

✓
3

j

◆
j
n (4)

For n = 10, this would give 27990 ways to create
two sets with a non-empty intersection. This number
is 95% more than the previous two combined.

Looking at the numbers of possible ways to parti-
tion a set of n elements, it is easy to notice that the
biggest contribution is always made by the sets with
a non-empty intersection. This fact makes us sus-
pect that the absence of such tier alphabet configu-
ration is due to the limitation on the computational
processes: much less options need to be considered
when such limit is established.

In order to illustrate the growth, consider Figures
6 and 7 below. Figure 6 shows the normal scale
of growth of the amount of partitions. The green
dashed line shows the disjoint partitions, the blue
dotted line represents the partitions with set-subset
relation, and the solid red line is representing ex-
ponentially growing number of incomparable parti-
tions. If the number of elements in the initial set is
larger than 10, the two lowest lines become nearly
indistinguishable, therefore for bigger numbers it is
better to consider the growth on a loglog scale, see
Figure 7.

Figure 6: Growth of number of partitions of sets containing up
to 10 elements (normal scale)

5 Conclusion

In this paper, we studied various harmonic pro-
cesses involving transmission of multiple features,
and used such systems as a litmus test for detecting
possible tier alphabet configurations. We found out
that there are 3 typologically attested cases, namely:
single tier, when both harmonies operate over the
same set of elements, tier containment, where one
harmony operates over the proper subset of items
that are involved in another assimilation, and dis-
joint tiers, where no the items involved in one har-
mony are relevant for the other one. The fourth pos-
sibility, being incomparable tier alphabets, is unat-
tested to the best of our knowledge.

Although it might seem unexpected, in fact this
restriction limits the amount of possible tier config-
urations a lot, as it is shown in Sec. 4. For a set of 10
elements, this limitation excludes 95% of all possi-
ble tier alphabet organizations. With the increasing
number of elements in the set of items relevant for
harmonic processes, this percentage grows as well.

This is just preliminary research about the typol-
ogy of long-distance processes and the math behind
it, and, of course, a lot is still remained unexplored.
For example, here we are investigating harmonic
processes, but these generalization must be checked
on a variety of dissimilation processes, see (Ben-
nett, 2013). Another route will be to investigate the

Figure 7: Growth of number of partitions of sets containing up
to 20 elements (loglog scale)

71

References

The Fallacy of Generalization
▶ Imagine we want to test the ability to learn long-distance

dependencies:

k a s a
∗

k a z a
ok

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

▶ Assuming an alphabet Σ = {a, b, c, d, e}, the training samples
could look like the following:

Lloc = {abcd, aabcd, baacd, bcaae, . . . }
Ldist = {abacd, bacad, bcada, bcaea, . . . }

What happens if we test on stimuli with similar distances?
Ltest = {abcad, abcad, bacda, abcea, . . . }

References

The Fallacy of Generalization
▶ Imagine we want to test the ability to learn long-distance

dependencies:

k a s a
∗

k a z a
ok

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

▶ Assuming an alphabet Σ = {a, b, c, d, e}, the training samples
could look like the following:

Lloc = {abcd, aabcd, baacd, bcaae, . . . }
Ldist = {abacd, bacad, bcada, bcaea, . . . }

What happens if we test on stimuli with similar distances?
Ltest = {abcad, abcad, bacda, abcea, . . . }

	Parallels between Phonology & Syntax
	Artificial Grammar Learning and Its Limits
	Subregularity and Quantifier Languages
	Summing Up
	Appendix
	References

