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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

▶ Are there laws that govern linguistic knowledge?
▶ Why are those the laws?
▶ Do they relate typological gaps?
▶ (How) are the reflected in human cognitive processes?
▶ What can we infer about linguistic representations?

Cross-disciplinarity for the win

▶ Stand on the shoulders of giants.
▶ Cross-fertilization and multiple explanatory levels.
▶ Yields new generalizations and data.
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Computational Theories of Language
Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•
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Precise Theories ⇒ Precise Predictions
recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•

Precise predictions for:

▶ typology → e.g. no center embedding in phonology
▶ learnability → e.g. no Gold learning for regular languages
▶ cognition?
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Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011
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Phonology as a Regular System

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•
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Beyond Monolithic Classes: Subregular LanguagesLogical Definability of Subregular Classes

Regular

Monadic
Second-Order Logic

Locally

Threshold Testable

Star Free

First-Order
Logic

Locally

Testable

Piecewise

Testable

Propositional
Logic

Strictly

Local

Strictly

Piecewise

Conjunction of
Negative Literals

S// < //+

⇢ ⇢
⇢⇢

⇢

⇢

TSL⇢

co
m
p
lexity

1▶ Multiple equivalent characterizations:
algebraic, logic, automata...
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Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up

6



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

▶ What would a computational linguist tell you?
Well, it depends!

▶ What will I show you?
They are fundamentally similar!

The Take-Home Message

▶ Two kind of dependencies: local and non-local
▶ The core mechanisms are the same cross-domain
▶ That is: linguistic dependencies are local over the right

structural representations
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Parallels between Phonology and Syntax

1 Local Dependencies
▶ In Phonology
▶ In Syntax

2 Non-local Dependencies
▶ In Phonology
▶ In Syntax

A methodological note:

▶ Only phonotactics considered (no input-output mappings)
▶ Minimalist Grammars (Stabler 1997) as a model of syntax
▶ Formal language theory as a tool to assess parallelisms

8



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels between Phonology and Syntax

1 Local Dependencies
▶ In Phonology
▶ In Syntax

2 Non-local Dependencies
▶ In Phonology
▶ In Syntax

A methodological note:

▶ Only phonotactics considered (no input-output mappings)
▶ Minimalist Grammars (Stabler 1997) as a model of syntax
▶ Formal language theory as a tool to assess parallelisms

8



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology

1 Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. * rad
b. rat

1 Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. * faser
b. fazer

These patters can be described by strictly local (SL) constraints.
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Local Dependencies in Phonology are SL

Example: Word-final devoicing

▶ Forbid voiced segments at the end of a word: ∗[+voice]$
▶ German: ∗z$, ∗v$,∗d$ ($ = word edge).

$ r a d $

∗

$ r a t $

ok

Example: Intervocalic voicing

▶ Forbid voicess segments in-between two vowels: ∗V[-voice]V
▶ German: ∗ase, ∗ise, ∗ese, ∗isi, . . .

$$ f a s e r $

∗

$$ f a z e r $

ok
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What about Syntax?

We need a model for syntax ...

▶ Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)

▶ Operations: Merge and Move
▶ Adopt Chomsky-Borer hypothesis:

Grammar is just a finite list of feature-annotated lexical items

Local dependencies in syntax

▶ Merge is a feature-driven operation:
category feature N−, D−, ...
selector feature N+, D+, ...

▶ Subcategorization as formalized by Merge is strictly local.
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Local Dependencies in Syntax

Merge is a feature-driven operation:
▶ category feature N−, D−, ...
▶ selector feature N+, D+, ...

’s cat
N−N+ D+ D−

12
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Merge is SL (Graf 2012)
Merge

Merge

the’s

Mary
D−

D−N+ D+ D−

SL constraints on Merge

▶ We lift constraints from string
n-grams to tree n-grams

▶ We get SL constraints over
subtrees.

∗Merge

ba
¬X−X+ D−
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Interim Summary

Local Data Structure
Phonology ? ?
Syntax ? ?

Local phenomena modeled by n-grams of bounded size:
▶ computationally very simple
▶ learnable from positive examples of strings/trees
▶ plausible cognitive requirements
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Interim Summary

Local Non-local Data Structure
Phonology SL ? Strings
Syntax SL ? Trees

Local phenomena modeled by n-grams of bounded size:
▶ computationally very simple
▶ learnable from positive examples of strings/trees
▶ plausible cognitive requirements
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Unbounded Dependencies in Phonology
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)

(3) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(4) a. LHLLLL
b. LLLLHL
c. * LHLLHL
d. LHHHHL

15
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Unbounded Dependencies Are Not SL
▶ Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

▶ But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗

16
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Locality Over Tiers

$ s t a j a n o w o n w a S $∗

▶ Sibilants can be arbitrarily far away from each other!
▶ Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

▶ Projection of selected segments on a tier T;
▶ Strictly local constraints over T determine wellformedness;
▶ Unbounded dependencies are local over tiers.

17
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Unbounded Dependencies are TSL
▶ Let’s revisit Samala Sibilant Harmony

(6) a. * hasxintilawaS

b. * haSxintilawas
c. haSxintilawaS

▶ What do we need to project? [+strident]
▶ What do we need to ban? ∗[+ant][−ant],∗[−ant][+ant]

I.E. ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

Example: TSL Samala

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

18
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TSL Phonology: Accounting for Context

▶ Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. * LHLLHL
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Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
▶ Project every H; project L iff immediately follows H
▶ Ban: HLH

Example
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▶ Most non-local dependencies in phonology are TSL
▶ What about syntax?
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Non-Local Dependencies in Syntax

Let’s stick to core operations:
▶ Move
▶ Merge?

Merge

Merge

cat’s

Mary
D−

N−N+ D+ D−
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Frey and Gärtner (2002); Graf (2017)
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Merge with Adjunction is TSL
Merge

Merge

Adjoin
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Merge
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A TSL grammar for Merge

1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary

Merge

D−

N−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)

2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge
D−

N−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)

2 Project any node which has X+ (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary
D−

N−

N+ D+ D−

Merge

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters..

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)

3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Merge

Adjoin

Adjoin

catold

stinky

’s

Mary Merge

cat
D−

N−

N+ D+ D− N−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = N)
2 Project any node which has X− (e.g. X = N)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary

∗Merge

D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = V)
2 Project any node which has X− (e.g. X = V)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X+ (e.g. X = V)
2 Project any node which has X− (e.g. X = V)
3 No Merge without exactly one LI among its daughters.

23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

∗Merge

Adjoin

Adjoin

theold

stinky

’s

Mary ∗Merge
D−

D−

N+ D+ D−

A TSL grammar for Merge
1 Project Merge iff a child has X− (e.g. X = V)
2 Project any node which has X+ (e.g. X = V)
3 No Merge without exactly one LI among its daughters. 23



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology ? ?
Syntax ? ?

▶ Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis
Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.
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strings

•

Syntax
trees

•

Morphology
strings

•
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Refining the Hierarchy via Typological Insights
Regular

SF

LTT

LT

SL

PT

SP

TSL

MTSLITSL

MITSL

▶ The goal is not identifying a single “correct” class
▶ Pinpoint fundamental properties of the patterns:

SL: ◁ , TSL: ◁T, etc
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Syntax beyond Merge and Move

▶ regular tree languages
(Michaelis 2004; Kobele et al. 2007)

▶ subregular operations (Graf 2018)
▶ subregular dependencies/constraints

(Vu et al. 2019; Shafiei and Graf 2019)
▶ tree automata and parsing restrictions

(Graf & De Santo 2020)
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Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:
▶ Attested and unattested typology

× Intervocalic Voicing iff applied an even times in the string
× Have a CP iff it dominates ≥ 3 TPs

▶ learnability?

Learnable from positive examples of strings/trees.

▶ cognition

?
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Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up
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Artificial Grammar Learning (AGL)

▶ Can be used to test implicit learning abilities (Reber, 1976)
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Reber (1976)

▶ Stimuli generated from an FST or randomly
▶ 28 sentences per group, in sets of four sentences each
▶ Participants asked to reproduce the sentences in a group
▶ Participants informed of correct/incorrect reproductions, but

not of error type
33
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Reber (1976) [cont.]

▶ Stimuli generated from an FST or randomly
▶ Significant differences between learning trajectories across

participant group 34
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Testing Subregular Predictions
Logical Definability of Subregular Classes

Regular

Monadic
Second-Order Logic

Locally

Threshold Testable

Star Free

First-Order
Logic

Locally

Testable

Piecewise

Testable

Propositional
Logic

Strictly

Local

Strictly

Piecewise

Conjunction of
Negative Literals

S// < //+

⇢ ⇢
⇢⇢

⇢

⇢
TSL⇢

co
m
p
lexity

1
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Example: Attested vs. Unattested Patterns

Attested: Unbounded Sibilant Harmony

▶ Every sibilant needs to harmonize

∗ $h a s x i n t i l a w S $

s S

ok $h a S x i n t i l a w S $

S S

Unattested: First-Last Harmony

▶ Harmony only holds between initial and final segments

ok $h a s x i n t i l a w S $

s S

∗ $ s a t x i n t i l a w S $

s S
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Lai (2015)

37



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Lai (2015): Stimuli

Avcu and Hestvik: Unlearnable phonotacticsArt. 56, page 8 of 22  

long-distance harmony patterns with an artificial grammar learning paradigm and tested 
whether SH or FL can be learned by adult participants in a laboratory setting. Three 
experimental groups were tested (SH, FL, and a control group with no training phase). 
The two test groups underwent two phases: a training phase and a testing phase. The SH 
group was trained by listening to words that conformed to an SH grammar, and the FL 
group was trained by listening to words that conformed to an FL grammar. The control 
group received no training. In the test, a two-alternative forced-choice (2AFC) task was 
used. Participants had to judge whether the first word or the second word of a pair were 
more likely to belong to the artificial language they had previously been exposed to. 
Participants in the control condition (which were not given a training phase) were simply 
asked to judge whether they thought the first or the second word of each pair was a better 
candidate for a possible word. All participants were given the same test stimuli.

The results of Lai’s study showed that the experimental group that was trained on the 
SH pattern preferred the words following the SH rule over the ones that violated it. Thus, 
the SH rule was learned by the participants. On the other hand, the FL participants did 
not show any preference for the FL rule — they did not perform significantly better than 
the control group. This suggests that FL grammars are indeed unlearnable. Interestingly, 
Lai also observed that the FL group showed a preference for stimuli that conformed to the 
SH pattern, i.e. a bias towards SH-conforming words. Lai speculated that they may have 
learned the SH pattern from the FL stimuli. A possible explanation for this is that anything 
that violates FL also violates SH, and anything that conforms to SH also conforms to FL, 
cf. Figure 3.

Therefore, given the same experimental setting and the same amount of training, the FL 
group appeared to learn SH grammar when exposed to FL stimuli. To address this potential 
SH bias, Lai designed a follow-up experiment in which the FL participants were trained 
with stimuli that conformed only to the FL pattern. Thus, the [s.s.s] and [ʃ.ʃ.ʃ] type of 
words was excluded from the training set, leaving only the [s.ʃ.s] and [ʃ.s.ʃ] type of words. 
The results of this follow-up experiment showed that when participants were trained with 
these “intensive” FL (henceforth “IFL”) stimuli, they preferred the stimuli that conformed 
only to the IFL pattern. In other words, after removing the ambiguous stimuli, the IFL 
group internalized a sibilant disharmony rule which requires each neighboring sibilant to 
be disharmonic. Lai (2015) concluded that the sum of the experiments indicated that SH, 
not FL was learned. These results were consistent with the hypothesis that the phonologi-
cal learner is restricted by sub-regular constraints to learn SH, but not FL.

Figure 3: Comparison of SH and FL stimuli.
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Lai (2015): Results

▶ See Avcu and Hestvik (2020), Avcu et al. (2019) for replications
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Lai (2015): Full Results
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Testing Predictions with AGL

▶ It is a powerful technique
▶ Careful in drawing inferences from laboratory behavior
▶ Importantly: Common fallacies in experimental design

41



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Predictions with AGL

▶ It is a powerful technique
▶ Careful in drawing inferences from laboratory behavior
▶ Importantly: Common fallacies in experimental design

41



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalizability in AGL
A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

ab
aabb

aaabbb

aaaabbbb

a

b

abb aab

aaaabb

aabbbb

abbbaaab

ambn

anbn
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Evaluating Contrasts (1/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs

(SL)

▶ Strings are all of even length

(REG)

▶ |w|A = |w|B

(CF)

▶ ...
Picking the right contrasts is essential!
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Evaluating Contrasts (2/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB ABABAB
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Evaluating Contrasts (3/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB AABBB
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Evaluating Contrasts (4/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs (SL)
▶ Strings are all of even length (REG)
▶ |w|A = |w|B (CF)

AAABBB AABBBB
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Evaluating Contrasts (5/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs: ABA (SL)
▶ Strings are all of even length: AABBB (REG)
▶ |w|A = |w|B: ABAB (CF)

▶ finite bound
▶ ...

AAABBB AAAABBBB

47



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (5/5)

A famous CFL exemplar: AnBn

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
▶ All As precede all Bs: ABA (SL)
▶ Strings are all of even length: AABBB (REG)
▶ |w|A = |w|B: ABAB (CF)
▶ finite bound
▶ ...

AAABBB AAAABBBB

47



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives
Long-distance relations?

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

Z a: e r s e
∗

Z a: e r S e
ok

▶ Stimuli are often ambiguous between overlapping classes
▶ Distinguishing between representation requires care
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AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
▶ Questions of complexity confounded by representations
▶ Questions of representations confounded by procedures

49



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
▶ Questions of complexity confounded by representations
▶ Questions of representations confounded by procedures

49



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntactic Expressivity

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

cross-serial dependencies

nested dependencies

▶ cross-serial preferred over nested (Bach et al. 1986)
▶ against predictions from the CH?

(Chesi & Moro 2014; de Vries et al. 2012)
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Expressivity vs. Procedures

▶ cross-serial preferred over nested (Bach et al. 1986)
▶ against predictions from the CH?

(Chesi & Moro 2014; de Vries et al. 2012)
▶ BUT: this can easily be derived via processing mechanisms

(Savitch 1989; Joshi, 1990; Rainbow and Joshi,1994)
▶ recognition complexity requires a precise theory of parsing cost

51



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]

q0 q1
b, a/ϵ

a, ϵ/a b, a/ϵ

▶ AnBn does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

▶ Same for the language of strings of well-nested parentheses
▶ Phrase-structure analyses often depend on distinctions based

on the meaning of the strings

Complicated questions:
▶ What representations are relevant?
▶ How are they connected to tasks?
▶ How do we probe them?
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Outline

1 Parallels between Phonology & Syntax

2 Artificial Grammar Learning and Its Limits

3 Subregularity and Quantifier Languages

4 Summing Up
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Subregularity Across Modules

TSL

Phonotactics Morphotactics

Morphosemantics
Syntax

non-final RHOL

UTP

first-last harmony

unbounded circumfixation

unbounded reduplication

monomorphemic quantifiers

Merge & Move

Loweringc-command
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In a Nutshell
Generalized Quantifiers and Semantic Complexity
Semantic automata (SA) as a model of quantifiers’ verification
▶ insights into quantifiers’ interpretation
▶ link between formal language theory and model theory

Beyond the SA perspective

▶ Formal language theory is richer that automata theory
▶ Coming back to formal language theory

→ subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
▶ complexity independent of the recognition mechanism
▶ cross-domain parallels, cognitive predictions, ...
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Generalized Quantifiers
Generalized quantifier Q(A,B):
▶ two sets A and B as arguments
▶ returns truth value (0, 1)

Example

(8) Every student cheated.

▶ every(A,B) = 1 iff A ⊆ B
▶ student: John, Mary, Sue
▶ cheat: John, Mary
▶ student ̸⊆ cheat ⇒ every(student, cheat) = 0
▶ “Every student cheated” is false.
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Binary Strings
▶ The language of A is the set of all permutations of A.

Example
student John, Mary, Sue

L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

▶ Now replace every a ∈ A by a truth value:
1 if a ∈ B
0 if a /∈ B

▶ The result is the binary string language of A under B.
Example

student John, Mary, Sue
cheat John, Mary

binary strings 110, 101, 011
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Quantifier Languages (van Benthem 1986)
▶ We can associate each quantifier Q with a language in {0, 1}∗

⇒ Q accepts only binary strings of specific shape
▶ This is its quantifier language.

Example: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

Example: some

▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ Some element of A must be mapped to 1.
▶ L(some) = {0, 1}∗ 1 {0, 1}∗
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Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Semantic Automata (van Benthem 1986, Mostowski 1998)
We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.
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Aristotelian Quantifiers are FSA-recognizable
Reminder: every

▶ every(A,B) holds iff A ⊆ B
▶ So every element of A must be mapped to 1.
▶ L(every) = {1}∗

q0start q1
0

1 0

1

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

True
student John, Mary, Sue

cheat John, Mary,Sue
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Other FSA-recognizable quantifiers

▶ Parity quantifiers: An even number

q0start q1

1

0
1

0

▶ Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0

1
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Proportional Quantifiers

▶ most(A, B) holds iff |A ∩ B| > |A − B|
▶ Lmost := {w ∈ {0, 1}∗ : |1|w > |0|w}
▶ There is no finite automaton recognizing this language.
▶ We need internal memory.

⇒ push-down automata: two states + a stack
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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some, Even, Odd, At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity?
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Let’s Look at the Automata One More Time
▶ Aristotelian quantifiers: Some

q0start q1
1

0 0

1

▶ Parity quantifiers: An even number

q0start q1

1

0
1

0

▶ Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0
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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

▶ Cyclic vs acyclic automata
▶ The number of states matters
▶ But: Complexity = succinctness of automata?

Reminder
It’s all grounded in quantifier languages
▶ FSA recognizable quantifiers → Regular quantifier languages
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Subregular Quantifiers: Every is SL
Reminder: Every

▶ every(A,B) holds iff A ⊆ B
▶ L(every) = {1}∗

▶ Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

⋊ 1 1 0 ⋉
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

⋊ 1 1 1 ⋉
T
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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
▶ L(some) = {0, 1}∗ 1 {0, 1}∗

▶ Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

⋊ 0 0

0n

0 ⋉
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

⋊ 0 0

0n

1 ⋉
FT
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Subregular Quantifiers: Some is TSL
Reminder: some
▶ some(A,B) holds iff A ∩ B ̸= ∅
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Parity Quantifiers?

An even number
▶ An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0
▶ L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
FT

F 1 1 1 1 1

1 1 1 1 1
FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).
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Characterization of Quantifier Languages (Graf 2019)

Language Constraint Complexity Subregular Grammar
every |0|w = 0 SL-1 S := {¬0}

no |1|w = 0 SL-1 S := {¬1}
some |1|w ≥ 1 TSL-2 T := {1}, S := {¬⋊⋉}

not all |0|w ≥ 1 TSL-2 T := {0}, S := {¬⋊⋉}
(at least) n |1|w ≥ n TSL-(n + 1) T := {1}, S :=

{
¬⋊ 1k⋉

}
k≤n

(at most) n |1|w ≤ n TSL-(n + 1) T := {1}, S :=
{
¬1k+1}

all but n |0|w = n TSL-(n + 1) T := {0}, S :=
{
¬0n+1,¬⋊ 0k⋉

}
k≤n

even number |1|w = 2n, n ≥ 0 regular impossible
most |1|w ≥ |0|w context-free impossible
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A Complexity Hierarchy (Revisited)
▶ Semantic Automata predictions

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

▶ Subregular characterization predictions

{All} < {Some, At least n, At most n} < {Even, Odd} < {Less than half, More than half, Most}

SL TSL REG CF

Automata vs Quantifier Languages

▶ complexity independent of the specific recognition machine
▶ what’s the cognitive reality of these predictions?
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Mechanisms and Descriptive Models

Automata theoretic classes seem to presuppose [...] spe-
cific classes of recognition mechanisms, raising questions
about whether these are necessarily relevant to the cogni-
tive mechanisms under study.
Descriptive characterizations focus on the nature of the
information about the properties of a string (or structure)
that is needed in order to distinguish those which exhibit
a pattern from those which do not.
What one can conclude is that whatever the actual mech-
anism is it must be sensitive to the kind of information
that characterizes the descriptive class.

Rogers & Pullum 2011
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Conclusion
▶ Many questions!

▶ Laws underlying linguistics knowledge?
▶ How complex are they?
▶ Why are those the laws?
▶ (How) are they reflected in behavior?

▶ Interplay of theory and data:
▶ new typological claims
▶ deeper understanding of formalism through data
▶ new empirical questions
▶ unification of diverse data points
▶ direct ties to cognition/processing/learnability

Careful!
It’s just another tool. We need to be explicit about the questions
that we are asking and the connections we postulate!
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Example: Compounding Markers

▶ Russian has an infix -o- that may occur between
parts of compounds.

▶ Turkish has a single suffix -sI that occurs at end
of compounds.

(9) vod
water

-o-
-comp-

voz
carry

-o-
-comp-

voz
carry

‘carrier of water-carriers’
(10) türk

turkish
bahçe
garden

kapI

gate
-sI

-comp
(∗-sI)
(∗-comp)

‘Turkish garden gate’
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Example: Compounding Markers [cont.]
▶ Russian and Turkish are TSL.

Tier1 comp affix and stem edges #
Russian n-grams oo, $o, o$
Turkish n-grams sisi, $si, si#

▶ The combined pattern would yield Ruskish: stemn+1-sin
▶ This pattern is not regular and hence not TSL either.
▶ Hypothesis (Aksenova et al, 2016)

If a language allows unboundedly many compound affixes,
they are infixes.

Testable Predictions
▶ Can naive subjects learn Russian-like, Turkis-like, and

Ruskish-like compounding?
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Complexity as a Magnifying Lens

▶ We can compare patterns and predictions across classes
▶ We can also compare patterns within a same class
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Testing Harmony Systems

▶ We can also account for multiple processes
▶ Thus we can cover the complete phonotactics of a language

∗ s q u ÿ: i

ok s q ÿ:
ok

∗
s ÿ:

T2 : sibilant anteriorityT1 : sibilant voicing

S q u ÿ: i

ok
ok

S q ÿ: ok
S ÿ:

T2 : sibilant anteriorityT1 : sibilant voicing

3 Types of multiple feature spreadings

In many languages, long-distance agreement pro-
cesses involve spreading of more than one feature.
The choice of items involved in a harmonic process,
as well as of the harmonizing feature, varies a lot
from language to language. For example, in many
systems, vowel harmony in a feature such as back-
ness (TURKISH, FINNISH) or tongue root position
(MONGOLIAN, BURYAT) co-exists with labial as-
similation, see (Kaun, 1995) for numerous examples
of such vowel harmonies. Or it can be sibilant har-
mony in two features such as anteriority and voic-
ing (NAVAJO, TUAREG). Also, in several languages
it is possible to find both consonantal and vowel
harmonies in features such as nasality and height
(KIKONGO, KIYAKA, BUKUSU).

Further we show that in some cases, one TSL
grammar is enough (Case 1) – it is possible to en-
force both harmonic spreadings over a single tier.
Another possibility is containment, and it is attested
as well (Case 2) – there are languages in which one
spreading affects a subset of items involved in an-
other spreading. In some languages, harmonies af-
fect two separate sets of segments, and the intersec-
tion of these two sets is empty (Case 3) – such tier
alphabets are disjoint. And the only relation that ap-
pears to be typologically unattested is non-empty in-
tersection (Case 4): to the best of our knowledge,
there are no harmonies that affect two sets of ele-
ments that only partially overlap.

For the details and properties of the class of Mul-
tiple TSL (MTSL) languages, see (De Santo, 2017).
We would like to highlight that this current work is
preliminary, and the provided data and generaliza-

disjoint contained

intersecting

Figure 2: Theoretically possible tier alphabet relations

tions are drawn to the best of our knowledge.

3.1 Case 1: single tier

Many harmonies with multiple feature spreadings
can be captured with a single tier-based strictly local
grammar. This does not mean that undergoers and
blockers are the same for both harmonies, it only
means that none of the items taking part in one har-
mony is irrelevant for the other one.

Consider YAKUT (Turkic) as an example of such
configuration. In this language, all vowels must
agree in fronting. However, labial harmony spreads
from low vowels onto both low and high ones, from
high vowels to high ones, but it cannot spread from
high vowels to low ones. The latter ones, in this
case, function as harmonizing blockers: they inherit
[round] specification from any preceding vowel, but
block the rounding assimilation in [+high][–high]
configuration, see (Sasa, 2001; Sasa, 2009).

The accusative affix -(n)ü, -(n)u, -(n)1, -(n)i with a
high vowel and the plural marker -lor, -lör, -lar, -ler
with a non-high vowel demonstrate this pattern, see
examples (5-12) below from (Kaun, 1995).

(5) oGo-lor ‘child-PL’ *oGo-lar
(6) börö-lör ‘wolf-PL’ *börö-ler
(7) oGo-nu ‘child-ACC’ *oGo-n1

(8) börö-nü ‘wolf-ACC’ *börö-ni

(9) murum-u ‘nose-ACC’ *murum-1
(10) tünnük-ü ‘window-ACC’ *tünnük-i
(11) ojum-lar ‘shaman-PL’ *ojum-lor
(12) tünnük-ler ‘window-PL’ *tünnük-lör

Within a word, all vowels must share the same
[tense] specification (5-12). High suffixal vowels
agree with any preceding vowel in rounding (7-10),
whereas low vowels can only inherit rounding fea-
ture from preceding low vowel (5,6), otherwise they
are realized as non-rounded (11,12).

The tier alphabet T of TSL grammar that cap-
tures YAKUT pattern consists of all vowels presented
in the language. Hfront rules out sequences of
vowels that disagree in fronting, whereas the part
of the grammar responsible for the labial harmony
(Hr1 [Hr2 [Hr3) blocks occurrence of a rounded
low vowel if it is preceded by a high one, and also
any other combination of vowels that disagree in
their labial features. The obtained TSL grammar op-
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T1 = T2

T1 ⇢ T2 T1 \ T2 = ;

• •

•

Imdlawn Tashlhiyt Kikongo

Yakut

Figure 8: Attested tier alphabets relations

size n of tier alphabets that is relevant for natural
languages, and check which tier alphabet configu-
rations are available for each range of n. And, of
course, more careful typological overview is needed.

However, this result can be interesting from sev-
eral different perspectives. First, it reveals new typo-
logical generalization about harmonic systems and
natural languages in general. Secondly, it might
shed light on the issues related to the learnability
of multiple tier-based strictly local grammars. And,
lastly, it brings the desired naturalness to the theory
of formal languages.
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of 2 sets with incomparable intersection that can be
obtained from a set with n elements:

3 ⇤ S(n, 3) = 1

2

3X

j=0

(�1)3�j

✓
3

j

◆
j
n (4)

For n = 10, this would give 27990 ways to create
two sets with a non-empty intersection. This number
is 95% more than the previous two combined.

Looking at the numbers of possible ways to parti-
tion a set of n elements, it is easy to notice that the
biggest contribution is always made by the sets with
a non-empty intersection. This fact makes us sus-
pect that the absence of such tier alphabet configu-
ration is due to the limitation on the computational
processes: much less options need to be considered
when such limit is established.

In order to illustrate the growth, consider Figures
6 and 7 below. Figure 6 shows the normal scale
of growth of the amount of partitions. The green
dashed line shows the disjoint partitions, the blue
dotted line represents the partitions with set-subset
relation, and the solid red line is representing ex-
ponentially growing number of incomparable parti-
tions. If the number of elements in the initial set is
larger than 10, the two lowest lines become nearly
indistinguishable, therefore for bigger numbers it is
better to consider the growth on a loglog scale, see
Figure 7.

Figure 6: Growth of number of partitions of sets containing up
to 10 elements (normal scale)

5 Conclusion

In this paper, we studied various harmonic pro-
cesses involving transmission of multiple features,
and used such systems as a litmus test for detecting
possible tier alphabet configurations. We found out
that there are 3 typologically attested cases, namely:
single tier, when both harmonies operate over the
same set of elements, tier containment, where one
harmony operates over the proper subset of items
that are involved in another assimilation, and dis-
joint tiers, where no the items involved in one har-
mony are relevant for the other one. The fourth pos-
sibility, being incomparable tier alphabets, is unat-
tested to the best of our knowledge.

Although it might seem unexpected, in fact this
restriction limits the amount of possible tier config-
urations a lot, as it is shown in Sec. 4. For a set of 10
elements, this limitation excludes 95% of all possi-
ble tier alphabet organizations. With the increasing
number of elements in the set of items relevant for
harmonic processes, this percentage grows as well.

This is just preliminary research about the typol-
ogy of long-distance processes and the math behind
it, and, of course, a lot is still remained unexplored.
For example, here we are investigating harmonic
processes, but these generalization must be checked
on a variety of dissimilation processes, see (Ben-
nett, 2013). Another route will be to investigate the

Figure 7: Growth of number of partitions of sets containing up
to 20 elements (loglog scale)
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The Fallacy of Generalization
▶ Imagine we want to test the ability to learn long-distance

dependencies:

k a s a
∗

k a z a
ok

Z a: e r s e

∗
Z s

Z a: e r S e

ok

Z S

▶ Assuming an alphabet Σ = {a, b, c, d, e}, the training samples
could look like the following:

Lloc = {abcd, aabcd, baacd, bcaae, . . . }
Ldist = {abacd, bacad, bcada, bcaea, . . . }

What happens if we test on stimuli with similar distances?
Ltest = {abcad, abcad, bacda, abcea, . . . }
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