Mathematical Linguistics & Cognitive Complexity

Aniello De Santo

aniellodesanto.github.io
aniello.desanto@utah.edu
Q@AnyDs

NTNU
May 24, 2022

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

Are there laws that govern linguistic knowledge?
Why are those the laws?

>

>

» Do they relate typological gaps?

» (How) are the reflected in human cognitive processes?
>

What can we infer about linguistic representations?

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

Are there laws that govern linguistic knowledge?
Why are those the laws?

>

>

» Do they relate typological gaps?

» (How) are the reflected in human cognitive processes?
>

What can we infer about linguistic representations?

Cross-disciplinarity for the win

» Stand on the shoulders of giants.
» Cross-fertilization and multiple explanatory levels.

> Yields new generalizations and data.

Conclusion

AGL & Limits Quantifier Languages

Phonology & Syntax

Computational Theories of Language

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

Quantifier Languages

Phonology & Syntax AGL & Limits

Conclusion

Computational Theories of Language

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive
L]

context-free

o regular

(finite)

Phonology J) Syntax
Kaplan and Kay (1994) Shieber (1985)

Morphology
Karttunen et al. (1992)

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Precise Theories = Precise Predictions

recursively enumerable
context-sensitive
mildly-context sensitive .
context-free

regular

;\J
Phonology Morphology Syntax

Kaplan and Kay (1994) Karttunen et al. (1992) Shieber (1985)

Precise predictions for:

> typology — e.g. no center embedding in phonology

> learnability — e.g. no Gold learning for regular languages

> cognition?

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

= (finite) =

S —

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular
\ , (finite) ‘/ ==

O

Finite-State Automaton

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

AN i (finite) ‘/ =

o= \, Push-Down Automaton

Finite-State Automaton

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

Linear-bounded Automaton

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular
\ , (finite)) ~ > L=
\

o= Push-Down Automaton

Finite-State Automaton

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Chomsky Hierarchy and Automata Theory

Turing Machine
Linear-bounded Automaton

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular
\ , (finite)) ~ > L=
\

o= Push-Down Automaton

Finite-State Automaton

Phonology & Syntax AGL & Limits

Quantifier Languages

Conclusion

Chomsky Hierarchy and Automata Theory
Turing Machine

Linear-bounded Automaton

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

Finite-State Automaton

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Phonology as a Regular System

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

o regular

(finite)

Phonology
Kaplan and Kay (1994)

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Beyond Monolithic Classes: Subregular Languages

Regular Monadic
& Second-Order Logic
| U |
Locally c ! Star F ! First-Order
Threshold Testable > '€ Logic
a I I
g U ! U |
;T Locally 1 Piecewise 1 Propositional
| Testable . Testable | Logic
v}) v} 1
I I
Strictly TSL: Strictly } Conjunction of
| Local Piecewise| | Negative Literals
~ . : :
S/« ‘ < /<t !

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Beyond Monolithic Classes: Subregular Languages

Regula Monadic
gular Second-Order Logic
| U |
Locally c ! Star Free ! First-Order
Threshold Testable — ' =% ™] Logic
a I I
g U ! U |
'ET Locally 1 Piecewise 1 Propositional
| Testable . Testable | Logic
v}) v} 1
I I
Strictly TSL: Strictly } Conjunction of
| Local Piecewise| | Negative Literals
~ . : :
S/« ‘ < /<t !

» Multiple equivalent characterizations:
algebraic, logic, automata...

Outline

Parallels between Phonology & Syntax
Artificial Grammar Learning and Its Limits
Subregularity and Quantifier Languages

A Summing Up

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

» What would a computational linguist tell you?

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?

» What would a computational linguist tell you?
Well, it depends!

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Some Insights

Parallels between phonology and syntax?
» What would a computational linguist tell you?
Well, it depends!

» What will | show you?
They are fundamentally similar!

The Take-Home Message

» Two kind of dependencies: local and non-local

» The core mechanisms are the same cross-domain

» That is: linguistic dependencies are local over the right
structural representations

Phonology & Syntax

Parallels between Phonology and Syntax

Local Dependencies
» In Phonology
» In Syntax
Non-local Dependencies

» In Phonology
» In Syntax

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels between Phonology and Syntax

Local Dependencies

» In Phonology
» In Syntax

H Non-local Dependencies

» In Phonology
» In Syntax

A methodological note:

» Only phonotactics considered (no input-output mappings)

» Minimalist Grammars (Stabler 1997) as a model of syntax

» Formal language theory as a tool to assess parallelisms

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology

Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Local Dependencies in Phonology

Word-final devoicing

Forbid voiced segments at the end of a word
(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer

These patters can be described by strictly local (SL) constraints.

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

» Forbid voiced segments at the end of a word: *[+voice]$
» German: *z$, *v$,*d$ ($ = word edge).

$rad$$ $ rat $

Example: Intervocalic voicing

> Forbid voicess segments in-between two vowels: *V[-voice]V

*

> German: *ase,

$ fasers$§ $ fazer$

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

» Forbid voiced segments at the end of a word: *[+voice]$
» German: *z$, *v$,*d$ ($ = word edge).

*$ra!_d$: °k$ra:t$:

= bHo oot

Example: Intervocalic voicing

> Forbid voicess segments in-between two vowels: *V[-voice]V

*

> German: *ase,

$ fasers$§ $ fazer$

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Phonology are SL

Example: Word-final devoicing

» Forbid voiced segments at the end of a word: *[+voice]$
» German: *z$, *v$,*d$ ($ = word edge).

*$ra!_d$: °k$ra:t$:

= bHo oot

Example: Intervocalic voicing

> Forbid voicess segments in-between two vowels: *V[-voice]V

*

> German: *ase,

10

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

What about Syntax?

We need a model for syntax ...

» Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)

» Operations: Merge and Move

» Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of feature-annotated lexical items

11

Conclusion

Phonology & Syntax AGL & Limits Quantifier Languages

What about Syntax?

We need a model for syntax ...

» Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)
» Operations: Merge and Move

» Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of feature-annotated lexical items

Local dependencies in syntax

> Merge is a feature-driven operation:
category feature N—, D™, ..
selector feature NT, DT, ...

» Subcategorization as formalized by Merge is strictly local.

11

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
> category feature N7, D7, ...
» selector feature N*, DT, ..

s cat
Nt D* D~ N~

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
> category feature N7, D7, ...
> selector feature N*, DT, ...

Merge

N

s cat
Nt Dt D~ N~

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
> category feature N7, D7, ...
> selector feature N*, DT, ...

Mary Merge
D~ /\
's cat
Nt DT D~ N—

12

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Local Dependencies in Syntax

Merge is a feature-driven operation:
> category feature N7, D7, ...
» selector feature N*, DT, ...

Merge

/\
Mary Merge
D~ /\
's cat
Nt Dt D~ N-

12

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge is SL (Graf 2012)

Merge
/\
Mary Merge
D~ TN
's the
Nt Dt* D~ D~

SL constraints on Merge

*
» We lift constraints from string Merge

n-grams to tree n-grams /\

> We get SL constraints over a b
subtrees. Xt D™ X~

13

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge is SL (Graf 2012)

> We lift constraints from string

n-grams to tree n-grams /\

> We get SL constraints over a b
subtrees. Xt D™ X~

13

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Data Structure
Phonology ? ?
Syntax ? ?

14

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Data Structure
Phonology SL Strings
Syntax SL Trees

Local phenomena modeled by n-grams of bounded size:
P computationally very simple
> learnable from positive examples of strings/trees
> plausible cognitive requirements

14

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary

Local Non-local Data Structure
Phonology SL ? Strings
Syntax SL ? Trees

Local phenomena modeled by n-grams of bounded size:
P computationally very simple
> learnable from positive examples of strings/trees
> plausible cognitive requirements

14

Phonology & Syntax AGL & Limits Quantifier Languages

Unbounded Dependencies in Phonology

> Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(3) a. *hasxintilawa/
b. * halxintilawas
c. ha/xintilawa

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.

(Hyman 2011)

(4) LHLLLL
LLLLHL
* LHLLHL

LHHHHL

e 0o T o

Conclusion

15

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa/

Example: Samala

*$hasxintilawa/$

$hafxintilawa[$

16

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa/

Example: Samala

*$hasxintilawa/$

$hafxintilawa[$

16

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa/

Example: Samala

$hafxintilawa[$

16

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa/

Example: Samala

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/

b. * ha/xintilawas

c. ha/xintilawa/

Example: Samala

> But: Sibilants can be arbitrarily far away from each other!
*$stajanowonwa$

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies Are Not SL

» Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(5) a. *hasxintilawa/

b. * ha/xintilawas

c. ha/xintilawa/

Example: Samala

16

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Locality Over Tiers

» Sibilants can be arbitrarily far away from each other!

> Problem: SL limited to locality domains of size n;

17

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Locality Over Tiers

» Sibilants can be arbitrarily far away from each other!

> Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

» Projection of selected segments on a tier T;
> Strictly local constraints over T determine wellformedness;

» Unbounded dependencies are local over tiers.

17

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

*$hasxintilaw/[$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“Ghasxintilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$Hasxintilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$h@sxintilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasKintilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

*$hasx[ﬂnti|awj“$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxifjtilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxinffilaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxint[ijlaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintifllaw/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintil@w/$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintilaw)s *¢hafxintilaw/[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintilaw])$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

“$hasxintilaw/[g k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]

» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]
ILE. *sf, "s3, "zf, "z3, “[s, 38, "[z, "3z

*$hasxintilaw/[$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]

» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]
ILE. *sf, "s3, "zf, "z3, “[s, 38, "[z, "3z

*$hasxintilaw/[$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]

» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]
ILE. *sf, "s3, "zf, "z3, “[s, 38, "[z, "3z

“$hasxintilaw/$ *shaxintilawf]]$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]

» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]
ILE. *sf, "s3, "zf, "z3, “[s, 38, "[z, "3z

Example: TSL Samala

*$hasxintilaw/[$ k¢hafxintilaw[$

18

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL

*LHLLHL

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL

LHLLHL

*LHLLHL

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL Phonology: Accounting for Context

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.
(Hyman 2011)

(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL

'LHL LH

*LHLLHL

19

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H
» Ban: HLH

 HLLLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H
» Ban: HLH

CHLLLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
LADLLL LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
LHLOLL LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
L HLICLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
*LHL L[CD LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
 HLLLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
HL
 HLLLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
'H L H
 HLLLL CHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L HL
LHLLLL LHOLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L HL
LHLLLL *LHLOHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
'H L HL H
 HLLLL *LHL[CHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L HL HL
LHLLLL "LHLLHD

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L, HL HiL
 HLLLL *LHLLHL

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L, HL HiL
 HLLLL *LHLLHL

» Most non-local dependencies in phonology are TSL
» What about syntax?

20

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Non-Local Dependencies in Syntax

Let's stick to core operations:

> Move
> Merge?
Merge
/\
Mary Merge
D~ /\
's cat

Nt DT D™ N~

21

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Non-Local Dependencies in Syntax
Let's stick to core operations:
> Move
> Merge: Unbounded adjunction
Frey and Gartner (2002); Graf (2017)

Merge
/\
Mary Merge
D~ /\
's Adjoin
N*DTDT o~
stinky Adjoin

N

old cat
N™ 21

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

TSL over Trees: Projecting Tiers

Merge
/\
Mary Merge
D™ /\
's Adjoin
R
stinky Adjoin

N\

old cat
N-

22

Conclusion

Quantifier Languages

Phonology & Syntax AGL & Limits

TSL over Trees: Projecting Tiers

Merge
/\
Mary Merge --------- > Merge
D™ /\
's Adjoin cat

Nt DT D~ N
/ S A~

stinky Adjoin

N

old cat
N—_

22

Quantifier Languages

Phonology & Syntax AGL & Limits

Conclusion

TSL over Trees: Projecting Tiers

Merge ¢-------------- Merge
/\
Mary Mary Merge -------
D~ o D- T
| 's Adjoin

NFDTDT

stinky Adjoin

N

old cat

N—__/

22

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ /\
s Adjoin
N+ D+ D_ / RS
stinky Adjoin
/\

old cat

N-

A TSL grammar for Merge

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
Mary Merge
D~ /\
s Adjoin
Nt D¥ D~ .
stinky Adjoin
/\
old cat
N-

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
Mary Merge -~ - -} - - » Merge
D~ /\
s Adjoin
Nt D¥ D~ .
stinky Adjoin
/\

old cat

N-

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

23

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ T
s Adjoin
N+ D+ D_ / RS

stinky Adjoin

Merge

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge Merge
D-
N B / S~

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ T
s Adjoin

Nt D¥ D~

Merge

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ T
s Adjoin
N+ D+ D_ / RS

stinky Adjoin

Merge

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge Merge
D~ T |
s Adjoin cat
N+ D+ D_ / T~ /7N_

stinky Adjoin)/

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ T
s Adjoin
N+ D+ D_ / RS

stinky Adjoin

Merge

cat
N-

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

[Project any node which has X~ (e.g. X =N)

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\ ******** \
Mary Merge . Merge
's Adjoin . cat 3
N+ D+ D~ / T~ i N~ :

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

A Project any node which has X~ (e.g. X =N)
No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary *Merge
D~ T
s Adjoin
N+ D+ D_ / R

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =V

A Project any node which has X~ (e.g. X =V)
No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL
Merge

Mary *Merge _______________ ’ *Merge
D_ /\

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =V

A Project any node which has X~ (e.g. X =V)
No Merge without exactly one LI among its daughters.

23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary *Merge *Merge
D- .
s Adjoin
N+ D+ D_ / T~
stinky Adjoin
/\

old the

D-

A TSL grammar for Merge
Project Merge iff a child has X~ (e.g. X =V

F1 Project any node which has XT (e.g. X =V)
No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\
Mary *Merge *Merge
D~ T
s Adjoin
N+ D+ D_ / T~

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X~ (e.g. X =V

F1 Project any node which has XT (e.g. X =V)
No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Merge with Adjunction is TSL

Merge
/\ ,,,,,,,, _
Mary *Merge ’ *Merge ;
D_ /\ o /‘
s Adjoin
N+ D+ D_ / T~
stinky Adjoin
/\
old the
D-

A TSL grammar for Merge
Project Merge iff a child has X~ (e.g. X =V

F1 Project any node which has XT (e.g. X =V)
No Merge without exactly one LI among its daughters. 23

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology ? ?
Syntax ? ?

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology SL ?
Syntax SL ?

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local
Phonology SL TSL
Syntax SL TSL

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local Data Structure
Phonology SL TSL Strings
Syntax SL TSL Trees

> Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parallels Between Phonology And Syntax

Local Non-local Data Structure
Phonology SL TSL Strings
Syntax SL TSL Trees

> Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird's-Eye View of the Framework

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird's-Eye View of the Framework

recursively enumerable

context-sensitive

mildly-context sensitive
[]

context-free

regular

Phonology : Syntax
Kaplan and Kay (1994) Shieber (1985)
strings Morphology strings
Karttunen et al. (1992)
strings

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Bird's-Eye View of the Framework

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

Phonology ;(Syntax
strings trees
& Morphology d
strings

25

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Refining the Hierarchy via Typological Insights

Regular
SF
MITSL LT
/\
ITSL MTSL
i LT PT
TSL
\
SL SP

> The goal is not identifying a single “correct” class

» Pinpoint fundamental properties of the patterns:
SL: <, TSL: <, etc

26

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntax beyond Merge and Move

> regular tree languages
(Michaelis 2004; Kobele et al. 2007)

> subregular operations (Graf 2018)

> subregular dependencies/constraints
(Vu et al. 2019; Shafiei and Graf 2019)

> tree automata and parsing restrictions
(Graf & De Santo 2020)

27

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis

Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology

> learnability?

P> cognition

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis
Dependencies in phonology, (morphology), and syntax are

subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology
X Intervocalic Voicing iff applied an even times in the string
x Have a CP iff it dominates > 3 TPs

> learnability?

P> cognition

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis

Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology
X Intervocalic Voicing iff applied an even times in the string
x Have a CP iff it dominates > 3 TPs

> learnability?
Learnable from positive examples of strings/trees.

P> cognition

28

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Interim Summary: Again, So What?

Strong Parallelism Hypothesis

Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology
X Intervocalic Voicing iff applied an even times in the string
x Have a CP iff it dominates > 3 TPs

> learnability?
Learnable from positive examples of strings/trees.

> cognition ?

28

AGL & Limits

Outline

Artificial Grammar Learning and Its Limits

29

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)

30

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)

31

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)

32

Phonology & Syntax AGL & Limits

Quantifier Languages Conclusion

Reber (1976)

Fic. 1. Schematic state diagram of the grammar used to generate the grammatical stimulus items.

> Stimuli generated from an FST or randomly
P 28 sentences per group, in sets of four sentences each
> Participants asked to reproduce the sentences in a group

> Participants informed of correct/incorrect reproductions, but
not of error type 33

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Reber (1976) [cont.]

o = = =

Mean Errors

-
Ll

1T 2 3 4 5§ & 1
Sets
Fig. 2. Mean number of errors to criterion on each of the seven learning sets.
» Stimuli generated from an FST or randomly
> Significant differences between learning trajectories across
participant group 34

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Subregular Predictions

R | Monadic
egular Second-Order Logic
| U |
Locally c ! Star Free ! First-Order
Threshold Testable ~ =% 7] Logic
a I I
S v | v |
-(:T Locally 3 Piecewise 3 Propositional
| Testable . Testable | Logic
v}) v} |
I I
Strictly TSL: Strictly } Conjunction of
| Local . Piecewise| Negative Literals
<+ : |
S/« ‘ < /<t !

35

Conclusion

Quantifier Languages

Phonology & Syntax AGL & Limits

Example: Attested vs. Unattested Patterns

Attested: Unbounded Sibilant Harmony

> Every sibilant needs to harmonize

“$hasxintilaw/[$ k¢hafxintilaw[$

Unattested: First-Last Harmony

» Harmony only holds between initial and final segments

k¢hasxintilaw[$ “¢satxintilaw[$

36

Phonology & Syntax

Limits

Quantifier Languages

Lai (2015)

Linguistic

Learnable vs. Unlearnable
Harmony Patterns

Regine Lai

Posted Online July 09, 2015
https://doi org/101162/LING a 00188

© 2015 Massachusetts Institute of Technology
Linguistic Inquiry

Volume 46 | Issue 3 | Summer 2015
p.425-451

Keywords: phonotactics, learnability, computational phonology,
formal theory, typology, dependencies

37

Phonology & Syntax AGL & Limits

Quantifier Languages

Lai (2015): Stimuli

vFLY'SH
[sokosos]
i
[+anterior] [+anterior] [+anterior]

* FL x SH
[sokosof]
t

[+anterior] [+anterior] [-anterior]

[sokofos]
t

[+anterior] [-anterior] [+anterior]

v FL % SH

[fokosof]
t

[-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.

38

Phonology & Syntax Quantifier Languages Conclus

Lai (2015): Stimuli

vFLY'SH * FL x SH
[sokosos] [sokosof]
t \ / t
[+anterior] [+anterior] [+anterior] [+anterior] [+anterior] [-anterior]
v FL * SH
[sokofos] [fokosof]
[. _— t
[+anterior] [-anterior] [+anterior] [-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.

Table 6
Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs
FL/*SH vs. *FL/*SH FL/SH vs. *FL/*SH FL/SH vs. FL/*SH
(e.g,[s...J...8]vs. (eg,[s...s...8]vs. (e.g,[s...s...s]vs.
[s...s...0D [s...s...0D [s...5...8D)
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

38

Lai (2015): Results

0.8

0.7

0.6

0.5

Rate of choosing FL/SH

0.4

03

Table 6

FL/SH vs. *FL/*SH

*Hk

vex 063

4

62

Control FL SH

Quantifier Lar

FL/*SH vs. *FL/*SH

Rate of choosing FL/*SH

Control

FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH
(e.g,[s...5...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

39

Phonology & Syntax Limits

Lai (2015): Results

FL/SH vs. *FL/*SH

0.8

- ok
§ 07 e 063 062
206

8

=3

5 05

<

=3

s

3 04

o

0.3

Control FL SH

Table 6

Quantifier Langua;

FL/*SH vs. *FL/*SH

Rate of choosing FL/*SH

Control

FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH
(e.g,[s...5...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

> See Avcu and Hestvik (2020), Avcu et al. (2019) for replications

39

Lai (2015): Full Results

Rate of choosing FL/SH

0.8

0.7

FL/SH vs. *FL/*SH

e

0.63

e

Control FL

Table 6

Quantifier Lar

FL/*SH vs. *FL/*SH

1=

.62

Rate of choosing FL/*SH

SH

Control FL SH

FL/SH vs. FL/*SH
07 -
w 038 056

0.6 —

Rate of choosing FL/SH
o
3
=)
&

Control FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH

FL/SH vs. *FL/*SH

FL/SH vs. FL/*SH

(e.g,[s...5...8]vs. (eg,[s...s...8]vs. (e.g,[s...s...s]vs.
[s...5... 0D (5...5...5) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

40

AGL & Limits

Testing Predictions with AGL

41

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Testing Predictions with AGL

> It is a powerful technique
> Careful in drawing inferences from laboratory behavior

> Importantly: Common fallacies in experimental design

41

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalizability in AGL
A famous CFL exemplar: A"B"

ab, aabb, aaabbb, aaaabbbb, . . .

42

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalizability in AGL
A famous CFL exemplar: A"B"

ab, aabb, aaabbb, aaaabbbb, . ..

aaaabb ambn

b

aabb

ab
aaaabbbb

aaabbb

a™b"

42

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)
A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?

> All As precede all Bs (SL)
» Strings are all of even length (REG)
> |wla = |ulp (CF)
> ...

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?

> All As precede all Bs (SL)
» Strings are all of even length (REG)
> |wla = |ulp (CF)
> ...

Picking the right contrasts is essential!

43

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (2/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs (SL)

> Strings are all of even length (REG)

> |wla = |ulp (CF)
AAABBB ABABAB

44

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (3/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

> All As precede all Bs (SL)

» Strings are all of even length (REG)

> |wla = |wlp (CF)
AAABBB AABBB

45

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (4/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

> All As precede all Bs (SL)

> Strings are all of even length (REG)

> |wla = |wlp (CF)
AAABBB AABBBB

46

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (5/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs: ABA (SL)
» Strings are all of even length: AABBB (REG)
> |wla = |w|p: ABAB (CF)

a7

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (5/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs: ABA (SL)
» Strings are all of even length: AABBB (REG)
> |wla = |w|p: ABAB (CF)
» finite bound
>

AAABBB AAAABBBB

a7

Phonology & Syntax AGL & Limits

Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives

Long-distance relations?

48

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives

Long-distance relations?

3 S: 3 J‘:
3 aie I s e 3 ae 1 [e
*‘ ‘ - = ok,,,‘ -
3a e r; sl e ias e 1o [le
[! 2

> Stimuli are often ambiguous between overlapping classes
P Distinguishing between representation requires care
48

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

49

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
» Questions of complexity confounded by representations

> Questions of representations confounded by procedures

49

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntactic Expressivity

cross-serial dependencies

recursively enumerable

context-sensitive
mildly-context sensitive

context-free

regular

///

(finite) '
nested dependencies

50

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Syntactic Expressivity

cross-serial dependencies

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

///

(finite) '
nested dependencies

> cross-serial preferred over nested (Bach et al. 1986)

» against predictions from the CH?
(Chesi & Moro 2014; de Vries et al. 2012)

50

Phonology & Syntax AGL & Limits

Expressivity vs. Procedures

Quantifier Languages

Gloss: that Jan saw Marie swim

(dass) Jan Marie schwi sah (dass) Jan Piet Marie schwimmen lassen sah
l nested

, dengi

example from
(that) Jan Marie swim saw German (that) Jan Piet Marie swim make saw
Gloss: That Jan saw Marie swim Gloss: that Jan saw Piet make Marie swim
(dat) Jan Marie zag (dat) Jan Piet Marie zag laten zwemmen

crossed

I lencies:

example from
(that) Jan Marie saw swim Dutch (that) Jan Piet Marie saw make swim

Gloss: that Jan saw Piet make Marie swim

> cross-serial preferred over nested (Bach et al. 1986)

> against predictions from the CH?
(Chesi & Moro 2014; de Vries et al. 2012)

> BUT: this can easily be derived via processing mechanisms
(Savitch 1989; Joshi, 1990; Rainbow and Joshi, 1994)

Conclusion

> recognition complexity requires a precise theory of parsing cost

51

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)
» Same for the language of strings of well-nested parentheses
» Phrase-structure analyses often depend on distinctions based
on the meaning of the strings

52

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)
» Same for the language of strings of well-nested parentheses
» Phrase-structure analyses often depend on distinctions based
on the meaning of the strings

Complicated questions:
> What representations are relevant?
> How are they connected to tasks?

» How do we probe them?
52

Quantifier Languages

Outline

Subregularity and Quantifier Languages

53

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregularity Across Modules

.
Lowering

\
\

Syntax \
Morphosemantics
°
monomorphemic| quantifiers
TSL PRSI

Merge & Move|®

Phonotactics | | Morphotactics

unbounded reduplication,

. 1
non-final RHOL T T
U'T'P unbounded circumfixation

54

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification

> insights into quantifiers’ interpretation

> link between formal language theory and model theory

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification
> insights into quantifiers’ interpretation

> link between formal language theory and model theory

Beyond the SA perspective

» Formal language theory is richer that automata theory

» Coming back to formal language theory
— subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification
> insights into quantifiers’ interpretation

> link between formal language theory and model theory

Beyond the SA perspective

» Formal language theory is richer that automata theory

» Coming back to formal language theory
— subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
» complexity independent of the recognition mechanism

P cross-domain parallels, cognitive predictions, ...

55

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Generalized Quantifiers

Generalized quantifier Q(A, B):
> two sets A and B as arguments
> returns truth value (0, 1)

) Every student cheated.

(8
> every(A,B)=1iff ACB
> student: John, Mary, Sue
» cheat: John, Mary

> student Z cheat = every(student, cheat) = 0
> “Every student cheated” is false.

56

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Binary Strings
» The language of A is the set of all permutations of A.

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

57

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Binary Strings
» The language of A is the set of all permutations of A.

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

> Now replace every a € A by a truth value:
1 ifaeB
0 ifa¢gB
» The result is the binary string language of A under B.

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011

57

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.

58

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.

Example: every

> every(A,B) holds iff AC B
> So every element of A must be mapped to 1.
> L(every) = {1}"

58

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.

Example: every

> every(A,B) holds iff AC B
> So every element of A must be mapped to 1.
> L(every) = {1}"

Example: some

> some(A, B) holds iff ANB # ()
> Some element of A must be mapped to 1.
» L(some) = {0,1}*1{0,1}*

58

Quantifier Languages Conclusion

Phonology & Syntax AGL & Limits

Chomsky Hierarchy and Automata Theory

Turing Machine
Linear-bounded Automaton

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

//
=

Push-Down Automaton

Finite-State Automaton

Semantic Automata

We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.

59

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Aristotelian Quantifiers are FSA-recognizable

Reminder: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}*

60

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Aristotelian Quantifiers are FSA-recognizable

Reminder: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}*

False

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011

1 0
start —> 0 1
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111

60

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Other FSA-recognizable quantifiers

> Parity quantifiers: An even number
0 0
1

start —> °
1

» Cardinal quantifiers: At least 3
0

0 0
start —(1%1%1@ 1

61

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Proportional Quantifiers

» most(A, B) holds iff AN B| > |A — B|
¥ Lmost := {w € {0, 1}* : |1|w > |0|w}
» There is no finite automaton recognizing this language.

> We need internal memory.
= push-down automata: two states + a stack

62

Phonology & Syntax AGL & Limits

Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA

PDA

{All, Some, Even, Odd, At least n, At most n}

<

{Less than half, More than half, Most},

63

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some, Even, Odd, At least n, At most n}|<|{Less than half, More than half, Most}

Are these all of equivalent complexity?

63

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Let's Look at the Automata One More Time

> Avristotelian quantifiers: Some
0 0

1
start —> 1

» Parity quantifiers: An even number
0 0
1

start —> a
1

> Cardinal quantifiers: At least 3
0

0
A A (=)
start —(@ q q2 4 A 1

64

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}{ <|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}{ <|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

65

Phonology & Syntax AGL & Limits

Quantifier Languages

Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n

<|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

» But: Complexity = succinctness of automata?

65

Phonology & Syntax AGL & Limits

Quantifier Languages

Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <

{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

» But: Complexity = succinctness of automata?

Reminder

It's all grounded in quantifier languages

» FSA recognizable quantifiers — Regular quantifier languages

65

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
>

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
*0 *0

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
grammar *0 grammar *0
X1 10 X w11 1 x

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
grammar *0 grammar *0
“@lox 111 x

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
grammar *0 grammar *0
1o x 111 x

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
grammar *0 grammar *0
1 1@ x 111K

66

Phonology & Syntax

AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

John, Mary, Sue
John, Mary, Sue

110, 101, 011 binary strings 111
*0 grammar *0
1.0/ x w11 1 x

66

AGL & Limits Quantifier Languages

Conclusion

Phonology & Syntax

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

John, Mary, Sue
John, Mary, Sue

110, 101, 011 binary strings 111
*0 grammar *0
1 :_0_| X X 1 1 X

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
grammar *0 grammar *0
F
X 1 1 :_0_| X X 1 1 X

66

Phonology & Syntax

AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

110, 101, 011 binary strings
*0 grammar
110.x 59 1l

John, Mary, Sue
John, Mary, Sue
111

*0

1 (1) x

66

Phonology & Syntax

AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

John, Mary, Sue
John, Mary, Sue

110, 101, 011 binary strings 111
*0 grammar *0
'_O_ID(T

1 111 X

66

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion
Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
| 2

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
000 x X 00 1 X

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
x[0]0 0 X 00 1 X

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
x 0:[0] 0 X 00 1K

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
x 10:,0:[0]) x X 00 1K

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
F
X 101101101 x X 00 1 K

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
F
X 101101101 x SRVHIVHE S

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *0 grammar *0
F F
X 101101101 x SRVHIVHE S

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *00 grammar *00
F F
><000r>< ><oo"i'><

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar *000 grammar *000
F T
X0 0 0'x X0 0 1'x

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John
binary strings 000 binary strings 100,010,001
grammar 7 grammar 7
X 1007 0} x X 7007 11w

67

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
| 2

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T = {1}
S={"xx} S={"xx}

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T = {1}
S={*xx} S={"xx}
X0 0 0 X X010 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
X X
X 0 0 0 X X 01 0 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
X X
x[0]0 0 x X010 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
X X
x 0[0]0 x X010 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
X X
x 0 0[0]x X010 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix !
X 0 0 0 X X 01 0 X

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fis X! X X
X 0 0 0 X X 01 0 X

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fis X! X X
X000 X x[0]1 0 x

68

Phonology & Syntax AGL & Limits

Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix ! x 1 X
X000 X x 0[]0 x

68

Phonology & Syntax AGL & Limits Quantifier Languages

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix ! x 1 X
Xx 00 0 X x 0 1[0] x

68

Phonology & Syntax AGL & Limits Quantifier Languages

Conclusion

Subregular Quantifiers: Some is TSL

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T = {1}
S={"xx} §={"xx}
Fix X! ' 1! K
X0 0 0 X X 01 0 X

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix X! B s
X 0 0 0 X X 01 0 X

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix ! Tix 1K
X 0 0 0 X X 01 0 X

68

AGL & Limits

Conclusion

Phonology & Syntax Quantifier Languages

Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.

student John, Mary, Sue student John, Mary, Sue
cheat cheat John,
binary strings 000 binary strings 100, 010, 001
grammar T = {1} grammar T'= {1}
S={"xx} §={"xx}
Fix ! Tix 1K
X 00" 0 X X 0" 1 0™ X

68

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

11100 11110 F1 1111

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

69

Conclusion

Phonology & Syntax AGL & Limits Quantifier Languages

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

Fi=====-=-- Fi==-==-=-=-- Fr
1 1

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

69

Conclusion

Quantifier Languages

Phonology & Syntax AGL & Limits

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

69

Conclusion

Quantifier Languages

Phonology & Syntax AGL & Limits

Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n >0
» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}

Is L(even) a TSL language?

11110 F1 1111

Since n is arbitrary, there is no general TSL grammar that can

generate L(even).

69

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Characterization of Quantifier Languages (Graf 2019)

Language Constraint Complexity Subregular Grammar
every (0], =0 SL-1 S :={-0}
no |1}, =0 SL-1 S :={-1}
some [1|, >1 TSL-2 T:={1}, S:={-xx}
not all [0, >1 TSL-2 T:={0}, S:={-xx}
(atleast)n |1],>n TSL-(n+1) T:={1},S:={-x lkx}kgn
(at most) n |1|, < n TSL-(n+1) T:={1}, S:={-1F1
allbutn |0, =n TSL-(n+1) T:={0}, S:= {-0"" =« 0"},
even number |1|, =2n, n >0 regular impossible
most |1]y > |0]w context-free impossible

70

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Complexity Hierarchy (Revisited)

> Semantic Automata predictions
FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}

71

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Complexity Hierarchy (Revisited)

> Semantic Automata predictions
FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}

Automata vs Quantifier Languages

> complexity independent of the specific recognition machine

> what's the cognitive reality of these predictions?

71

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Mechanisms and Descriptive Models

Automata theoretic classes seem to presuppose [...] spe-
cific classes of recognition mechanisms, raising questions
about whether these are necessarily relevant to the cogni-
tive mechanisms under study.

Descriptive characterizations focus on the nature of the
information about the properties of a string (or structure)
that is needed in order to distinguish those which exhibit
a pattern from those which do not.

What one can conclude is that whatever the actual mech-
anism is it must be sensitive to the kind of information
that characterizes the descriptive class.

Rogers & Pullum 2011

72

Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Conclusion

> Many questions!
> Laws underlying linguistics knowledge?
» How complex are they?
» Why are those the laws?
> (How) are they reflected in behavior?

> Interplay of theory and data:

> new typological claims

deeper understanding of formalism through data
new empirical questions

unification of diverse data points

direct ties to cognition/processing/learnability

It's just another tool. We need to be explicit about the questions
that we are asking and the connections we postulate!

vvyyvyy

73

Selected References |

Applegate, R.B. 1972. Ineseno chumash grammar. Doctoral Dissertation, University of
California,Berkeley.

Avcu, Enes, and Arild Hestvik. 2020. Unlearnable phonotactics. Glossa: a journal of
general linguistics 5.

De Santo, Aniello, and Thomas Graf. 2017. Structure sensitive tier projection:
Applications and formal properties. Ms., Stony Brook University.

De Santo, Aniello, Thomas Graf, and John E. Drury. 2017. Evaluating subregular
distinctions in the complexity of generalized quantifiers. Talk at the ESSLLI
Workshop on Quantifiers and Determiners (QUAD 2017), July 17 — 21, University
of Toulouse, France.

Frey, Werner, and Hans-martin Géartner. 2002. On the treatment of scrambling and
adjunction in minimalist grammars. In In Proceedings, Formal Grammar?02.
Citeseer.

Graf, Thomas. 2012. Locality and the complexity of Minimalist derivation tree
languages. In Formal Grammar 2010/2011, ed. Philippe de Groot and Mark-Jan
Nederhof, volume 7395 of Lecture Notes in Computer Science, 208—227.
Heidelberg: Springer. URL
http://dx.doi.org/10.1007/978-3-642-32024-8_14.

Graf, Thomas. 2017. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53. URL http://ling.auf.net/lingbuzz/003943, (to
appear).

http://dx.doi.org/10.1007/978-3-642-32024-8_14
http://ling. auf.net/lingbuzz/003943

Selected References ||

Graf, Thomas. 2018. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53, ed. Daniel Edmiston, Marina Ermolaeva, Emre Hakgtider,
Jackie Lai, Kathryn Montemurro, Brandon Rhodes, Amara Sankhagowit, and
Miachel Tabatowski, 117-136.

Graf, Thomas. 2019. A subregular bound on the complexity of lexical quantifiers. In
Proceedings of the 22nd Amsterdam Colloquium, ed. Julian J. Schléder, Dean
McHugh, and Floris Roelofsen, 455-464.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local
constraints in phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 58—-64. URL
http://www.aclweb.org/anthology/P11-2011.

Hyman, Larry M. 2011. Tone: Is it different? The Handbook of Phonological Theory,
Second Edition 197-239.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to Minimalism. In Model Theoretic Syntax at 10, ed.
James Rogers and Stephan Kepser, 71-80.

Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic Inquiry
46:425-451.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Electronic
Notes in Theoretical Computer Science 53:192-209.

http://www.aclweb.org/anthology/P11-2011

Selected References Il

Shafiei, Nazila, and Thomas Graf. 2019. The subregular complexity of syntactic
islands. Ms., Stony Brook University.

Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68—95. Berlin: Springer.

Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford
handbook of linguistic Minimalism, ed. Cedric Boeckx, 617—643. Oxford: Oxford
University Press.

Vu, Mai Ha, Nazila Shafiei, and Thomas Graf. 2019. Case assignment in TSL syntax:
A case study. In Proceedings of the Society for Computation in Linguistics (SCil)
2019, ed. Gaja Jarosz, Max Nelson, Brendan O'Connor, and Joe Pater, 267-276.

Of Black Swans and Flying Pigs

Of Black Swans and Flying Pigs

Of Black Swans and Flying Pigs

> Not a single data point, but classes of phenomena

> Value of restrictive theories: predictive and explanatory

v

We learn from falsifying them too!

References

A Plethora of Testable Predictions

> Attested patterns A and B are TSL.
» But combined pattern A+B is not TSL.

» A-+B should be harder to learn than A and B

References

A Plethora of Testable Predictions

> Attested patterns A and B are TSL.
» But combined pattern A+B is not TSL.

» A-+B should be harder to learn than A and B

Morphotactics as Tier-Based Strictly Local Dependencies

Aléna Aksénova Thomas Graf Sedigheh Moradi

References

Example: Compounding Markers

» Russian has an infix -o- that may occur between
parts of compounds.

» Turkish has a single suffix -st that occurs at end
of compounds.

(9) vod -o- voz -O- VOZ
water -COMP- carry -COMP- carry
‘carrier of water-carriers’

(10) tirk bahge kapr -s1 (*-s1)
turkish garden gate -coMP (*-comp)
‘Turkish garden gate’

References

Example: Compounding Markers [cont.]

» Russian and Turkish are TSL.

Tier; CoOMP affix and stem edges #
Russian n-grams oo, %0, 0$
Turkish n-grams sisi, $si, si#

» The combined pattern would yield Ruskish: stem”*1-si”

» This pattern is not regular and hence not TSL either.
» Hypothesis (Aksenova et al, 2016)

If a language allows unboundedly many compound affixes,
they are infixes.

Testable Predictions

» Can naive subjects learn Russian-like, Turkis-like, and
Ruskish-like compounding?

References

Complexity as a Magnifying Lens

> We can compare patterns and predictions across classes

> We can also compare patterns within a same class

Proceedings of the Society for Computation in Linguistics

Volume 1 Article 8

2018
Formal Restrictions On Multiple Tiers

Alena Aksenova
Stony Brook University, alena.aksenova@stonybrook.edu

Sanket Deshmukh
Stony Brook University, sanket.deshmukh@stonybrook.edu

References

Testing Harmony Systems

> We can also account for multiple processes

» Thus we can cover the complete phonotactics of a language

disjoint contained

intersecting

T ¥ sibilant Voicing T5': sibilant anteriority

*s . q u 3 i

Figure 2: Theoretically possible tier alphabet relations

References

Testing Harmony Systems (cont.)

1004 ~°° disjoint
disjoint contained s set-subset

—— incomparable

107

10°

intersecting
Figure 2: Theoretically possible tier alphabet relations 10°

10t

10° 10!

Figure 7: Growth of number of partitions of sets containing up
Imdlawn Tashlhiyt Kikongo to 20 elements (loglog scale)

References

The Fallacy of Generalization

> Imagine we want to test the ability to learn long-distance
dependencies:

,,,,,,,,,,,,

» Assuming an alphabet ¥ = {a, b, ¢, d, €}, the training samples
could look like the following:

Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . .. }

What happens if we test on stimuli with similar distances?

References

The Fallacy of Generalization

> Imagine we want to test the ability to learn long-distance
dependencies:

,,,,,,,,,,,,

» Assuming an alphabet ¥ = {a, b, ¢, d, €}, the training samples
could look like the following:
Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . .. }

What happens if we test on stimuli with similar distances?
Lyiesi = {abcad, abcad, bacda, abcea, . .. }

	Parallels between Phonology & Syntax
	Artificial Grammar Learning and Its Limits
	Subregularity and Quantifier Languages
	Summing Up
	Appendix
	References

