Mathematical Linguistics & Cognitive Complexity

Aniello De Santo

aniellodesanto.github.io
aniello.desanto@utah.edu
Q@AnyDs

NTNU
May 24, 2022



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

(Some) Big Questions

Are there laws that govern linguistic knowledge?
Why are those the laws?

>

>

» Do they relate typological gaps?

» (How) are the reflected in human cognitive processes?
>

What can we infer about linguistic representations?
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Are there laws that govern linguistic knowledge?
Why are those the laws?

>

>

» Do they relate typological gaps?

» (How) are the reflected in human cognitive processes?
>

What can we infer about linguistic representations?

Cross-disciplinarity for the win

» Stand on the shoulders of giants.
» Cross-fertilization and multiple explanatory levels.

> Yields new generalizations and data.
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AGL & Limits Quantifier Languages

Phonology & Syntax

Computational Theories of Language

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.
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Precise Theories = Precise Predictions

recursively enumerable
context-sensitive
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context-free

regular
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Phonology Morphology Syntax

Kaplan and Kay (1994) Karttunen et al. (1992) Shieber (1985)

Precise predictions for:

> typology — e.g. no center embedding in phonology

> learnability — e.g. no Gold learning for regular languages

> cognition?
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Chomsky Hierarchy and Automata Theory
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Chomsky Hierarchy and Automata Theory

Linear-bounded Automaton
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Chomsky Hierarchy and Automata Theory

Turing Machine
Linear-bounded Automaton
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Conclusion

Chomsky Hierarchy and Automata Theory
Turing Machine

Linear-bounded Automaton

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

Finite-State Automaton

Automata theoretic classes seem to presuppose [...] specific classes
of recognition mechanisms, raising questions about whether these are
necessarily relevant to the cognitive mechanisms under study.

Rogers & Pullum 2011
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Phonology as a Regular System
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Beyond Monolithic Classes: Subregular Languages
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Beyond Monolithic Classes: Subregular Languages
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» Multiple equivalent characterizations:
algebraic, logic, automata...



Outline

Parallels between Phonology & Syntax
Artificial Grammar Learning and Its Limits
Subregularity and Quantifier Languages

A Summing Up
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Some Insights

Parallels between phonology and syntax?
» What would a computational linguist tell you?
Well, it depends!

» What will | show you?
They are fundamentally similar!

The Take-Home Message

» Two kind of dependencies: local and non-local

» The core mechanisms are the same cross-domain

» That is: linguistic dependencies are local over the right
structural representations
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Parallels between Phonology and Syntax

Local Dependencies
» In Phonology
» In Syntax
Non-local Dependencies

» In Phonology
» In Syntax
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Parallels between Phonology and Syntax

Local Dependencies

» In Phonology
» In Syntax

H Non-local Dependencies

» In Phonology
» In Syntax

A methodological note:

» Only phonotactics considered (no input-output mappings)

» Minimalist Grammars (Stabler 1997) as a model of syntax

» Formal language theory as a tool to assess parallelisms
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Local Dependencies in Phonology

Word-final devoicing
Forbid voiced segments at the end of a word

(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer
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Conclusion

Local Dependencies in Phonology

Word-final devoicing

Forbid voiced segments at the end of a word
(1) a. *rad
rat

Intervocalic voicing
Forbid voiceless segments in between two vowels

(2) a. *faser

b. fazer

These patters can be described by strictly local (SL) constraints.
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Local Dependencies in Phonology are SL

Example: Word-final devoicing

» Forbid voiced segments at the end of a word: *[+voice]$
» German: *z$, *v$,*d$ ($ = word edge).

$rad$$ $ rat $

Example: Intervocalic voicing

> Forbid voicess segments in-between two vowels: *V[-voice]V

*

> German: *ase,

$ fasers$§ $ fazer$
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What about Syntax?

We need a model for syntax ...

» Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)

» Operations: Merge and Move

» Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of feature-annotated lexical items

11
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Phonology & Syntax AGL & Limits Quantifier Languages

What about Syntax?

We need a model for syntax ...

» Minimalist grammars (MGs) are a formalization of Minimalist
syntax. (Stabler 1997, 2011)
» Operations: Merge and Move

» Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of feature-annotated lexical items

Local dependencies in syntax

> Merge is a feature-driven operation:
category feature N—, D™, ..
selector feature NT, DT, ...

» Subcategorization as formalized by Merge is strictly local.

11
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Local Dependencies in Syntax
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» selector feature N*, DT, ...
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Merge is SL (Graf 2012)

Merge
/\
Mary Merge
D~ TN
's the
Nt Dt* D~ D~

SL constraints on Merge

*
» We lift constraints from string Merge

n-grams to tree n-grams /\

> We get SL constraints over a b
subtrees. Xt D™ X~

13
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Interim Summary

Local Data Structure
Phonology  SL Strings
Syntax SL Trees

Local phenomena modeled by n-grams of bounded size:
P computationally very simple
> learnable from positive examples of strings/trees
> plausible cognitive requirements
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Interim Summary

Local Non-local Data Structure
Phonology  SL ? Strings
Syntax SL ? Trees

Local phenomena modeled by n-grams of bounded size:
P computationally very simple
> learnable from positive examples of strings/trees
> plausible cognitive requirements

14
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Unbounded Dependencies in Phonology

> Samala Sibilant Harmony
Sibilants must not disagree in anteriority.
(Applegate 1972)
(3) a. *hasxintilawa/
b. * halxintilawas
c. ha/xintilawa

» Unbounded Tone Plateauing in Luganda (UTP)
No L may occur within an interval spanned by H.

(Hyman 2011)

(4) LHLLLL
LLLLHL
* LHLLHL

LHHHHL

e 0o T o

Conclusion

15
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Locality Over Tiers

» Sibilants can be arbitrarily far away from each other!

> Problem: SL limited to locality domains of size n;

Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

» Projection of selected segments on a tier T;
> Strictly local constraints over T determine wellformedness;

» Unbounded dependencies are local over tiers.

17
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Unbounded Dependencies are TSL

> Let's revisit Samala Sibilant Harmony

(6) a. *hasxintilawa/
b. * ha/xintilawas
c. ha/xintilawa

» What do we need to project? [+strident]
» What do we need to ban? *[+ant]|[—ant],”[—ant][-+ant]

Example: TSL Samala

*$hasxintilaw/[$ k¢hafxintilaw[$
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TSL Phonology: Accounting for Context
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(Hyman 2011)
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Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H
» Ban: HLH

 HLLLL *LHLLHL
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Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
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Accounting for Context [cont.]

A TSL analysis for UTP (De Santo and Graf 2017):
> Project every H; project L iff immediately follows H

» Ban: HLH
H L, HL HiL
 HLLLL *LHLLHL

» Most non-local dependencies in phonology are TSL
» What about syntax?
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Non-Local Dependencies in Syntax

Let's stick to core operations:

> Move
> Merge?
Merge
/\
Mary Merge
D~ /\
's cat

Nt DT D™ N~
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Non-Local Dependencies in Syntax
Let's stick to core operations:
> Move
> Merge: Unbounded adjunction
Frey and Gartner (2002); Graf (2017)

Merge
/\
Mary Merge
D~ /\
's Adjoin
N*DTDT o~
stinky  Adjoin

N

old cat
N™ 21
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TSL over Trees: Projecting Tiers

Merge
/\
Mary Merge
D™ /\
's Adjoin
R
stinky  Adjoin

N\

old cat
N-
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TSL over Trees: Projecting Tiers

Merge
/\
Mary Merge --------- > Merge
D™ /\
's Adjoin cat

Nt DT D~ N
/ S A~

stinky  Adjoin

N

old cat
N—_
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Conclusion

TSL over Trees: Projecting Tiers

Merge ¢-------------- Merge
/\
Mary Mary Merge -------
D~ o D- T
| 's Adjoin

NFDTDT

stinky  Adjoin

N

old cat

N—__/

22
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Merge with Adjunction is TSL

Merge
/\
Mary Merge
D~ /\
s Adjoin
N+ D+ D_ / RS
stinky Adjoin
/\

old cat

N-

A TSL grammar for Merge
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Merge with Adjunction is TSL

Merge
Mary Merge
D~ /\
s Adjoin
Nt D¥ D~ .
stinky Adjoin
/\
old cat
N-

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N
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A TSL grammar for Merge
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Conclusion
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stinky Adjoin

Merge

A TSL grammar for Merge
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Merge
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Merge
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A TSL grammar for Merge
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Merge with Adjunction is TSL

Merge
/\ ******** \
Mary Merge . Merge
's Adjoin . cat 3
N+ D+ D~ / T~ i N~ :

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =N

A Project any node which has X~ (e.g. X =N)
No Merge without exactly one LI among its daughters.
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Merge with Adjunction is TSL

Merge
/\
Mary *Merge
D~ T
s Adjoin
N+ D+ D_ / R

stinky Adjoin

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =V

A Project any node which has X~ (e.g. X =V)
No Merge without exactly one LI among its daughters.
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Merge with Adjunction is TSL
Merge

Mary *Merge _______________ ’ *Merge
D_ /\

A TSL grammar for Merge
Project Merge iff a child has X™ (e.g. X =V

A Project any node which has X~ (e.g. X =V)
No Merge without exactly one LI among its daughters.
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Merge with Adjunction is TSL

Merge
/\
Mary *Merge *Merge
D- .
s Adjoin
N+ D+ D_ / T~
stinky Adjoin
/\
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D-

A TSL grammar for Merge
Project Merge iff a child has X~ (e.g. X =V

F1 Project any node which has XT (e.g. X =V)
No Merge without exactly one LI among its daughters. 23
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Merge with Adjunction is TSL

Merge
/\ ,,,,,,,, _
Mary *Merge ’ *Merge ;
D_ /\ o /‘
s Adjoin
N+ D+ D_ / T~
stinky Adjoin
/\
old the
D-

A TSL grammar for Merge
Project Merge iff a child has X~ (e.g. X =V
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Non-local dependencies are local over a simple relativization
domain.
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Parallels Between Phonology And Syntax

Local Non-local Data Structure
Phonology  SL TSL Strings
Syntax SL TSL Trees

> Relativized Locality:
Non-local dependencies are local over a simple relativization
domain.

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the same subregular
complexity over their respective structural representations.

24
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A Bird's-Eye View of the Framework

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular
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A Bird's-Eye View of the Framework

recursively enumerable

context-sensitive

mildly-context sensitive
[ ]

context-free

regular

Phonology : Syntax
Kaplan and Kay (1994) Shieber (1985)
strings Morphology strings
Karttunen et al. (1992)
strings
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A Bird's-Eye View of the Framework

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

Phonology ;( Syntax
strings trees
& Morphology d
strings
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Refining the Hierarchy via Typological Insights

Regular
SF
MITSL LT
/\
ITSL MTSL
i LT PT
TSL
\
SL SP

> The goal is not identifying a single “correct” class

» Pinpoint fundamental properties of the patterns:
SL: <, TSL: <, etc

26
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Syntax beyond Merge and Move

> regular tree languages
(Michaelis 2004; Kobele et al. 2007)

> subregular operations (Graf 2018)

> subregular dependencies/constraints
(Vu et al. 2019; Shafiei and Graf 2019)

> tree automata and parsing restrictions
(Graf & De Santo 2020)
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Interim Summary: Again, So What?

Strong Parallelism Hypothesis

Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology

> learnability?

P> cognition
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Interim Summary: Again, So What?

Strong Parallelism Hypothesis

Dependencies in phonology, (morphology), and syntax are
subregular over their respective structural representations.

We gain a unified perspective on:

P Attested and unattested typology
X Intervocalic Voicing iff applied an even times in the string
x Have a CP iff it dominates > 3 TPs

> learnability?
Learnable from positive examples of strings/trees.

> cognition ?
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Outline

Artificial Grammar Learning and Its Limits
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Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)
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Artificial Grammar Learning (AGL)

» Can be used to test implicit learning abilities (Reber, 1976)
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Quantifier Languages Conclusion

Reber (1976)

Fic. 1. Schematic state diagram of the grammar used to generate the grammatical stimulus items.

> Stimuli generated from an FST or randomly
P 28 sentences per group, in sets of four sentences each
> Participants asked to reproduce the sentences in a group

> Participants informed of correct/incorrect reproductions, but
not of error type 33
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Reber (1976) [cont.]

o = = =

Mean Errors

-
Ll

1T 2 3 4 5§ & 1
Sets
Fig. 2. Mean number of errors to criterion on each of the seven learning sets.
» Stimuli generated from an FST or randomly
> Significant differences between learning trajectories across
participant group 34
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Testing Subregular Predictions

R | Monadic
egular Second-Order Logic
| U |
Locally c ! Star Free ! First-Order
Threshold Testable ~ =% 7 ] Logic
a I I
S v | v |
-(:T Locally 3 Piecewise 3 Propositional
| Testable . Testable | Logic
v} ) v} |
I I
Strictly TSL: Strictly } Conjunction of
| Local . Piecewise| Negative Literals
<+ : |
S/« ‘ < /<t !
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Conclusion

Quantifier Languages

Phonology & Syntax AGL & Limits

Example: Attested vs. Unattested Patterns

Attested: Unbounded Sibilant Harmony

> Every sibilant needs to harmonize

“$hasxintilaw/[$ k¢hafxintilaw[$

Unattested: First-Last Harmony

» Harmony only holds between initial and final segments

_______________

k¢hasxintilaw[$ “¢satxintilaw[$
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Lai (2015)

Linguistic

Learnable vs. Unlearnable
Harmony Patterns

Regine Lai

Posted Online July 09, 2015
https://doi org/101162/LING a 00188

© 2015 Massachusetts Institute of Technology
Linguistic Inquiry

Volume 46 | Issue 3 | Summer 2015
p.425-451

Keywords: phonotactics, learnability, computational phonology,
formal theory, typology, dependencies
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Quantifier Languages

Lai (2015): Stimuli

vFLY'SH
[sokosos]
i
[+anterior] [+anterior] [+anterior]

* FL x SH
[sokosof]
t

[+anterior] [+anterior] [-anterior]

[sokofos]
t

[+anterior] [-anterior] [+anterior]

v FL % SH

[fokosof]
t

[-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.

38



Phonology & Syntax Quantifier Languages Conclus

Lai (2015): Stimuli

vFLY'SH * FL x SH
[sokosos] [sokosof]
t \ / t
[+anterior] [+anterior] [+anterior] [+anterior] [+anterior] [-anterior]
v FL * SH
[sokofos] [fokosof]
[ . _— t
[+anterior] [-anterior] [+anterior] [-anterior] [+anterior] [-anterior]

Figure 3: Comparison of SH and FL stimuli.

Table 6
Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs
FL/*SH vs. *FL/*SH FL/SH vs. *FL/*SH FL/SH vs. FL/*SH
(e.g,[s...J...8]vs. (eg,[s...s...8]vs. (e.g,[s...s...s]vs.
[s...s...0D [s...s...0D [s...5...8D)
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

38
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0.8

0.7

0.6

0.5

Rate of choosing FL/SH

0.4

03

Table 6

FL/SH vs. *FL/*SH

*Hk

vex 063

4

62

Control FL SH

Quantifier Lar

FL/*SH vs. *FL/*SH

Rate of choosing FL/*SH

Control

FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH
(e.g,[s...5...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control
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Lai (2015): Results

FL/SH vs. *FL/*SH

0.8

- ok
§ 07 e 063 062
206

8

=3

5 05

<

=3

s

3 04

o

0.3

Control FL SH

Table 6

Quantifier Langua;

FL/*SH vs. *FL/*SH

Rate of choosing FL/*SH

Control

FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH
(e.g,[s...5...8]vs.

FL/SH vs. *FL/*SH
(eg,[s...s...8]vs.

FL/SH vs. FL/*SH
(e.g,[s...s...s]vs.

[s...s...5D [s...s...0D) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control

> See Avcu and Hestvik (2020), Avcu et al. (2019) for replications
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Lai (2015): Full Results

Rate of choosing FL/SH

0.8

0.7

FL/SH vs. *FL/*SH

e

0.63

e

Control FL

Table 6

Quantifier Lar

FL/*SH vs. *FL/*SH

1=

.62

Rate of choosing FL/*SH

SH

Control FL SH

FL/SH vs. FL/*SH
07 -
w 038 056

0.6 —

Rate of choosing FL/SH
o
3
=)
&

Control FL SH

Predicted results with respect to the control group for each test pairing if Sibilant Harmony
and First-Last Assimilation grammars were internalized

Pairs

FL/*SH vs. *FL/*SH

FL/SH vs. *FL/*SH

FL/SH vs. FL/*SH

(e.g,[s...5...8]vs. (eg,[s...s...8]vs. (e.g,[s...s...s]vs.
[s...5... 0D (5...5...5) [s...5...sD
Conditions Rate of FL/*SH Rate of FL/SH Rate of FL/SH
SH ~ Control > Control > Control
FL > Control > Control ~ Control
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Testing Predictions with AGL
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Testing Predictions with AGL

> It is a powerful technique
> Careful in drawing inferences from laboratory behavior

> Importantly: Common fallacies in experimental design
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Generalizability in AGL
A famous CFL exemplar: A"B"

ab, aabb, aaabbb, aaaabbbb, . . .
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Generalizability in AGL
A famous CFL exemplar: A"B"

ab, aabb, aaabbb, aaaabbbb, . ..

aaaabb ambn

b

aabb

ab
aaaabbbb

aaabbb

a™b"
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Evaluating Contrasts (1/5)
A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?
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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Evaluating Contrasts (1/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . . .

Which features might one generalize to?

> All As precede all Bs (SL)
» Strings are all of even length (REG)
> |wla = |ulp (CF)
> ...

Picking the right contrasts is essential!
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Evaluating Contrasts (2/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs (SL)

> Strings are all of even length (REG)

> |wla = |ulp (CF)
AAABBB ABABAB
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Evaluating Contrasts (3/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

> All As precede all Bs (SL)

» Strings are all of even length (REG)

> |wla = |wlp (CF)
AAABBB AABBB
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Evaluating Contrasts (4/5)

A famous CFL exemplar: A" B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

> All As precede all Bs (SL)

> Strings are all of even length (REG)

> |wla = |wlp (CF)
AAABBB AABBBB
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Evaluating Contrasts (5/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs: ABA (SL)
» Strings are all of even length: AABBB (REG)
> |wla = |w|p: ABAB (CF)

a7
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Evaluating Contrasts (5/5)

A famous CFL exemplar: A™B"

ab, aabb, aaabbb, aaaabbbb, . ..

Which features might one generalize to?

» All As precede all Bs: ABA (SL)
» Strings are all of even length: AABBB (REG)
> |wla = |w|p: ABAB (CF)
» finite bound
>

AAABBB AAAABBBB

a7
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Quantifier Languages Conclusion

Evaluating Contrasts: Picking the Right Primitives

Long-distance relations?
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Evaluating Contrasts: Picking the Right Primitives

Long-distance relations?

3 S: 3 J‘:
3 aie I s e 3 ae 1 [ e
*‘ ‘ - = ok,,,‘ -
3a e r; sl e ias e 1o [le
[ ! 2

> Stimuli are often ambiguous between overlapping classes
P Distinguishing between representation requires care
48



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011
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AGL and Syntax/Semantics

distinctions between mechanisms for recognizing non-
Finite-State stringsets depend on the way in which the
additional structure, beyond the string itself, is organized;
these are issues that show up in the analysis of the string,
not in its form as a sequence of events.

Rogers & Pullum 2011

In other words:
» Questions of complexity confounded by representations

> Questions of representations confounded by procedures
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Syntactic Expressivity

cross-serial dependencies

recursively enumerable

context-sensitive
mildly-context sensitive

context-free

regular

///

(finite) '
nested dependencies
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Syntactic Expressivity

cross-serial dependencies

recursively enumerable
context-sensitive
mildly-context sensitive
context-free

regular

///

(finite) '
nested dependencies

> cross-serial preferred over nested (Bach et al. 1986)

» against predictions from the CH?
(Chesi & Moro 2014; de Vries et al. 2012)
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Expressivity vs. Procedures

Quantifier Languages

Gloss: that Jan saw Marie swim

(dass) Jan Marie schwi sah (dass) Jan Piet Marie schwimmen lassen sah
l nested

, dengi

example from
(that) Jan Marie swim saw German (that) Jan Piet Marie swim make saw
Gloss: That Jan saw Marie swim Gloss: that Jan saw Piet make Marie swim
(dat) Jan Marie zag (dat) Jan Piet Marie zag laten zwemmen

crossed

I lencies:

example from
(that) Jan Marie saw swim Dutch (that) Jan Piet Marie saw make swim

Gloss: that Jan saw Piet make Marie swim

> cross-serial preferred over nested (Bach et al. 1986)

> against predictions from the CH?
(Chesi & Moro 2014; de Vries et al. 2012)

> BUT: this can easily be derived via processing mechanisms
(Savitch 1989; Joshi, 1990; Rainbow and Joshi, 1994)

Conclusion

> recognition complexity requires a precise theory of parsing cost
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AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e
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AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)
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AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)
» Same for the language of strings of well-nested parentheses
» Phrase-structure analyses often depend on distinctions based
on the meaning of the strings
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AGL and Syntax/Semantics [cont.]
a, €/a b, afe

q0 >
b, a/e

> A"B"™ does not necessarily imply a proper stack
a PDA with a single counter is enough (Counter Machines)
» Same for the language of strings of well-nested parentheses
» Phrase-structure analyses often depend on distinctions based
on the meaning of the strings

Complicated questions:
> What representations are relevant?
> How are they connected to tasks?

» How do we probe them?
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Quantifier Languages

Outline

Subregularity and Quantifier Languages
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Subregularity Across Modules

________________________

.
Lowering

\
\

Syntax \
Morphosemantics
°
monomorphemic| quantifiers
TSL PRSI

Merge & Move|®

Phonotactics | | Morphotactics

unbounded reduplication,

. 1
non-final RHOL T T
U'T'P unbounded circumfixation

_____________________
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In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification

> insights into quantifiers’ interpretation

> link between formal language theory and model theory
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In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification
> insights into quantifiers’ interpretation

> link between formal language theory and model theory

Beyond the SA perspective

» Formal language theory is richer that automata theory

» Coming back to formal language theory
— subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)
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In a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’ verification
> insights into quantifiers’ interpretation

> link between formal language theory and model theory

Beyond the SA perspective

» Formal language theory is richer that automata theory

» Coming back to formal language theory
— subregular hierarchy & quantifier languages
(De Santo et al. 2017; Graf 2019)

Consequences
» complexity independent of the recognition mechanism

P cross-domain parallels, cognitive predictions, ...
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Generalized Quantifiers

Generalized quantifier Q(A, B):
> two sets A and B as arguments
> returns truth value (0, 1)

) Every student cheated.

(8
> every(A,B)=1iff ACB
> student: John, Mary, Sue
» cheat: John, Mary

> student Z cheat = every(student, cheat) = 0
> “Every student cheated” is false.
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Binary Strings
» The language of A is the set of all permutations of A.

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John
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Binary Strings
» The language of A is the set of all permutations of A.

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

> Now replace every a € A by a truth value:
1 ifaeB
0 ifa¢gB
» The result is the binary string language of A under B.

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011
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Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.
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Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.

Example: every

> every(A,B) holds iff AC B
> So every element of A must be mapped to 1.
> L(every) = {1}"
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Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape

> This is its quantifier language.

Example: every

> every(A,B) holds iff AC B
> So every element of A must be mapped to 1.
> L(every) = {1}"

Example: some

> some(A, B) holds iff ANB # ()
> Some element of A must be mapped to 1.
» L(some) = {0,1}*1{0,1}*
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Quantifier Languages Conclusion

Phonology & Syntax AGL & Limits

Chomsky Hierarchy and Automata Theory

Turing Machine
Linear-bounded Automaton

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

//
=

Push-Down Automaton

Finite-State Automaton

Semantic Automata

We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.
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Aristotelian Quantifiers are FSA-recognizable

Reminder: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}*
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Aristotelian Quantifiers are FSA-recognizable

Reminder: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}*

False

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011

1 0
start —> 0 1
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111
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Other FSA-recognizable quantifiers

> Parity quantifiers: An even number
0 0
1

start —> °
1

» Cardinal quantifiers: At least 3
0

0 0
start —( 1%1%1@ 1
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Proportional Quantifiers

» most(A, B) holds iff AN B| > |A — B|
¥ Lmost := {w € {0, 1}* : |1|w > |0|w}
» There is no finite automaton recognizing this language.

> We need internal memory.
= push-down automata: two states + a stack
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Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA

PDA

{All, Some, Even, Odd, At least n, At most n}

<

{Less than half, More than half, Most},
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A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some, Even, Odd, At least n, At most n}|<|{Less than half, More than half, Most}

Are these all of equivalent complexity?

63



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Let's Look at the Automata One More Time

> Avristotelian quantifiers: Some
0 0

1
start —> 1

» Parity quantifiers: An even number
0 0
1

start —> a
1

> Cardinal quantifiers: At least 3
0

0
A A (=)
start —( @ q q2 4 A 1

64



Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}{ <|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)
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A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}{ <|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters
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Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n

<|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

» But: Complexity = succinctness of automata?
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Phonology & Syntax AGL & Limits

Quantifier Languages

Conclusion

A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <

{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

» But: Complexity = succinctness of automata?

Reminder

It's all grounded in quantifier languages

» FSA recognizable quantifiers — Regular quantifier languages

65




Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
>
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Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student John, Mary, Sue student John, Mary, Sue
cheat John, Mary cheat John, Mary, Sue
binary strings 110, 101, 011 binary strings 111
*0 *0
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Conclusion

Phonology & Syntax

Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar
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John, Mary cheat
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Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

110, 101, 011 binary strings
*0 grammar
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John, Mary, Sue
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Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}*
» Eg. Every student cheated.

False

student
cheat

binary strings
grammar

John, Mary, Sue student
John, Mary cheat

John, Mary, Sue
John, Mary, Sue

110, 101, 011 binary strings 111
*0 grammar *0
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Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
| 2
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Subregular Quantifiers: Some is SL?

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
» Eg. Some student cheated.
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Subregular Quantifiers: Some is TSL

Reminder: some

» some(A,B) holds iff ANB # ()
» L(some) = {0,1}*1{0,1}"
| 2
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Fis X! X X
X000 X x[0]1 0 x
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Parity Quantifiers?
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» L(even) = {we 0,1%s.t.|1], > 2n, with n > 0}
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Since n is arbitrary, there is no general TSL grammar that can

generate L(even).
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Phonology & Syntax AGL & Limits Quantifier Languages Conclusion

Characterization of Quantifier Languages (Graf 2019)

Language Constraint Complexity Subregular Grammar
every (0], =0 SL-1 S :={-0}
no |1}, =0 SL-1 S :={-1}
some [1|, >1 TSL-2 T:={1}, S:={-xx}
not all [0, >1 TSL-2 T:={0}, S:={-xx}
(atleast)n |1],>n TSL-(n+1) T:={1},S:={-x lkx}kgn
(at most) n |1|, < n TSL-(n+1) T:={1}, S:={-1F1
allbutn |0, =n TSL-(n+1) T:={0}, S:= {-0"" =« 0"},
even number |1|, =2n, n >0 regular impossible
most  |1]y > |0]w context-free  impossible
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A Complexity Hierarchy (Revisited)

> Semantic Automata predictions
FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}
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> Semantic Automata predictions
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» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}

Automata vs Quantifier Languages

> complexity independent of the specific recognition machine

> what's the cognitive reality of these predictions?
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Mechanisms and Descriptive Models

Automata theoretic classes seem to presuppose [...] spe-
cific classes of recognition mechanisms, raising questions
about whether these are necessarily relevant to the cogni-
tive mechanisms under study.

Descriptive characterizations focus on the nature of the
information about the properties of a string (or structure)
that is needed in order to distinguish those which exhibit
a pattern from those which do not.

What one can conclude is that whatever the actual mech-
anism is it must be sensitive to the kind of information
that characterizes the descriptive class.

Rogers & Pullum 2011
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Conclusion

> Many questions!
> Laws underlying linguistics knowledge?
» How complex are they?
» Why are those the laws?
> (How) are they reflected in behavior?

> Interplay of theory and data:

> new typological claims

deeper understanding of formalism through data
new empirical questions

unification of diverse data points

direct ties to cognition/processing/learnability

It's just another tool. We need to be explicit about the questions
that we are asking and the connections we postulate!

vvyyvyy
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Of Black Swans and Flying Pigs

> Not a single data point, but classes of phenomena

> Value of restrictive theories: predictive and explanatory

v

We learn from falsifying them too!
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> Attested patterns A and B are TSL.
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A Plethora of Testable Predictions

> Attested patterns A and B are TSL.
» But combined pattern A+B is not TSL.

» A-+B should be harder to learn than A and B

Morphotactics as Tier-Based Strictly Local Dependencies

Aléna Aksénova Thomas Graf Sedigheh Moradi
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Example: Compounding Markers

» Russian has an infix -o- that may occur between
parts of compounds.

» Turkish has a single suffix -st that occurs at end
of compounds.

(9) vod -o- voz  -O- VOZ
water -COMP- carry -COMP- carry
‘carrier of water-carriers’

(10) tirk  bahge kapr -s1 (*-s1)
turkish garden gate -coMP (*-comp)
‘Turkish garden gate’
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Example: Compounding Markers [cont.]

» Russian and Turkish are TSL.

Tier; CoOMP affix and stem edges #
Russian n-grams oo, %0, 0$
Turkish n-grams sisi, $si, si#

» The combined pattern would yield Ruskish: stem”*1-si”

» This pattern is not regular and hence not TSL either.
» Hypothesis (Aksenova et al, 2016)

If a language allows unboundedly many compound affixes,
they are infixes.

Testable Predictions

» Can naive subjects learn Russian-like, Turkis-like, and
Ruskish-like compounding?
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Complexity as a Magnifying Lens

> We can compare patterns and predictions across classes

> We can also compare patterns within a same class

Proceedings of the Society for Computation in Linguistics

Volume 1 Article 8

2018
Formal Restrictions On Multiple Tiers

Alena Aksenova
Stony Brook University, alena.aksenova@stonybrook.edu

Sanket Deshmukh
Stony Brook University, sanket.deshmukh@stonybrook.edu
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Testing Harmony Systems

> We can also account for multiple processes

» Thus we can cover the complete phonotactics of a language

disjoint contained

intersecting

T ¥ sibilant Voicing T5': sibilant anteriority

*s . q u 3 i

Figure 2: Theoretically possible tier alphabet relations
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Testing Harmony Systems (cont.)

1004 ~°° disjoint
disjoint contained s set-subset

—— incomparable

107

10°

intersecting
Figure 2: Theoretically possible tier alphabet relations 10°

10t

10° 10!

Figure 7: Growth of number of partitions of sets containing up
Imdlawn Tashlhiyt Kikongo to 20 elements (loglog scale)
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The Fallacy of Generalization

> Imagine we want to test the ability to learn long-distance
dependencies:

,,,,,,,,,,,,

» Assuming an alphabet ¥ = {a, b, ¢, d, €}, the training samples
could look like the following:

Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . .. }

What happens if we test on stimuli with similar distances?
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could look like the following:
Liye = {abcd, aabed, baacd, beaae, . . . }
Lyt = {abacd, bacad, becada, beaea, . .. }

What happens if we test on stimuli with similar distances?
Lyiesi = {abcad, abcad, bacda, abcea, . .. }
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