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A Definition

Language Models assign probabilities to sequences of words.
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Word Prediction Everywhere

An experiment:

▶ Open any chat/messaging app you use frequently

▶ Start typing

I wish this lecture was

▶ What do you get after was?

▶ The same idea also applies also to full sentences!
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Word Prediction Everywhere [cont.]

▶ Humans do it too!

Please turn your homework

Why is automatizing this useful?

▶ speech recognition

▶ spell-checking/grammatical error correction

▶ machine translation

▶ maybe even more direct linguistics research . . .

This is where Language Models (LMs) enter the picture!
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Tackling Next Word Prediction

We want the most likely completion(s)...

Uhm, how do we figure out what is most likely?

▶ A naive idea:
→ Most likely = Most frequent word

▶ Approach:
1 Collect sufficiently large sample of texts (corpus)
2 For each word (type), count how often it occurs in

the entire sample (= its number of tokens).
3 Calculate the frequency of the word in the sample:

freq(word, sample) =
number of tokens of word

word length of whole sample
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Example calculation

Sample: 1000 words long Words: be, bed, bee, bell

Type be bed bee bell
Tokens 13 2 0 3

freq(be) = 13
1000 = 1.3% freq(bee) = 0

1000 = 0.0%

freq(bed) = 2
1000 = 0.2% freq(bell) = 3

1000 = 0.3%

Ordered predictions:

be, bell, bed, bee
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Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...

▶ Most likely = Most frequent word?

▶ BUT! Word usage varies by context!

Example

tested testing testimony
I have

hi low mid

I have been

hi hi low

I have the

low low hi

▶ The frequency of words is not enough,
we need frequencies of sequences of words ⇒ n-gram LMs

6



Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...

▶ Most likely = Most frequent word?

▶ BUT! Word usage varies by context!

Example

tested testing testimony
I have hi low mid

I have been

hi hi low

I have the

low low hi

▶ The frequency of words is not enough,
we need frequencies of sequences of words ⇒ n-gram LMs

6



Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...

▶ Most likely = Most frequent word?

▶ BUT! Word usage varies by context!

Example

tested testing testimony
I have hi low mid

I have been hi hi low
I have the low low hi

▶ The frequency of words is not enough,
we need frequencies of sequences of words ⇒ n-gram LMs

6



Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...

▶ Most likely = Most frequent word?

▶ BUT! Word usage varies by context!

Example

tested testing testimony
I have hi low mid

I have been hi hi low
I have the low low hi

▶ The frequency of words is not enough,
we need frequencies of sequences of words ⇒ n-gram LMs

6



Defining n-Grams

n-gram a contiguous sequence of n words

n Name Example

1 unigram John
2 bigram John to
3 trigram John to be
4 4-gram John to be in
5 5-gram John to be in the

Example

String

John and Marie are not Bill and Sue
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N-Gram LMs for Next Word Prediction

Frequencies can be computed and used for n-grams, too.
→ we still need a representative corpus...

Example

▶ Trigram frequencies
bus is late 30% train is late 15%
bus is lovely 25% train is lovely 8%
bus is lazy 10% train is lazy 2%

▶ Input
I will text you if the train is

▶ Sorted completions

late, lovely, lazy

▶ To predict a word w:

1 Needed resources: corpus
2 Compute frequencies for all n-grams
3 Look at previous n− 1 words
4 Find completions that maximize n-gram probability

8
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Linguistic Evaluation

The n-Gram Hypothesis (aka Markov Assumption)

The preceding n− 1 words reliably predict the next word.

P (wn|w1w2 . . . wn−2wn−1) ≈ P (wn|wn−2wn−1)

P (late|I will text you if the train is) ≈ P (late|train is)

▶ The n-gram hypothesis is not quite satisfying, though.

1 We are not going to see all possible words in all contexts

2 Many dependencies in language are not local

This is where Neural Networks LMs come in handy...

9



Linguistic Evaluation

The n-Gram Hypothesis (aka Markov Assumption)

The preceding n− 1 words reliably predict the next word.

P (wn|w1w2 . . . wn−2wn−1) ≈ P (wn|wn−2wn−1)

P (late|I will text you if the train is) ≈ P (late|train is)

▶ The n-gram hypothesis is not quite satisfying, though.

1 We are not going to see all possible words in all contexts

2 Many dependencies in language are not local

This is where Neural Networks LMs come in handy...

9



Linguistic Evaluation

The n-Gram Hypothesis (aka Markov Assumption)

The preceding n− 1 words reliably predict the next word.

P (wn|w1w2 . . . wn−2wn−1) ≈ P (wn|wn−2wn−1)

P (late|I will text you if the train is) ≈ P (late|train is)

▶ The n-gram hypothesis is not quite satisfying, though.

1 We are not going to see all possible words in all contexts

2 Many dependencies in language are not local

This is where Neural Networks LMs come in handy...

9



Linguistic Evaluation

The n-Gram Hypothesis (aka Markov Assumption)

The preceding n− 1 words reliably predict the next word.

P (wn|w1w2 . . . wn−2wn−1) ≈ P (wn|wn−2wn−1)

P (late|I will text you if the train is) ≈ P (late|train is)

▶ The n-gram hypothesis is not quite satisfying, though.

1 We are not going to see all possible words in all contexts

2 Many dependencies in language are not local

This is where Neural Networks LMs come in handy...

9



Ok but, who cares?

LMs assign probabilities to sequences of words.

▶ n-Gram LMs: use local contexts for sequence prediction

▶ Spoilers: Neural LMs...

And?

▶ speech recognition

▶ spell-checking/grammatical error correction

▶ text generation (think chatbots)

▶ machine translation

▶ maybe even (less application-oriented) linguistic research . . .
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LMs as Tools for Psycholinguistics

Jacobs, De Santo, and Grobol (2023)

Zeugma The architect bit the lime and the dust

Literal The architect bit the lime and the apple

▶ We can use LMs to generate literal continuations

The architect bit the
▶ Maze Task (Boyce & Levy, 2021):

Use LMs to generate low probability foils
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LMs as Tools for Sociolinguistics

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4360–4370
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics
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Making “fetch” happen: The influence of social and linguistic context on
nonstandard word growth and decline

Ian Stewart and Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30318
{istewart6,jacobe}@gatech.edu

Abstract

In an online community, new words come and
go: today’s haha may be replaced by tomor-
row’s lol. Changes in online writing are usu-
ally studied as a social process, with innova-
tions diffusing through a network of individ-
uals in a speech community. But unlike other
types of innovation, language change is shaped
and constrained by the grammatical system in
which it takes part. To investigate the role
of social and structural factors in language
change, we undertake a large-scale analysis of
the frequencies of nonstandard words in Red-
dit. Dissemination across many linguistic con-
texts is a predictor of success: words that ap-
pear in more linguistic contexts grow faster
and survive longer. Furthermore, social dis-
semination plays a less important role in ex-
plaining word growth and decline than previ-
ously hypothesized.

1 Introduction

Stop trying to make “fetch” happen! It’s not going
to happen! – Regina George (Mean Girls, 2005)

With the fast-paced and ephemeral nature of on-
line discourse, language change in online writing
is both prevalent (Androutsopoulos, 2011) and no-
ticeable (Squires, 2010). In social media, new
words emerge constantly to replace even basic ex-
pressions such as laughter: today’s haha is tomor-
row’s lol (Tagliamonte and Denis, 2008). Why
do some nonstandard words, like lol, succeed and
spread to new contexts, while others, like fetch,
fail to catch on? Can a word’s growth be predicted
from patterns of usage during its early days?

Language change can be treated like other so-
cial innovations, such as the spread of hyper-
links (Bakshy et al., 2011) or hashtags (Romero
et al., 2011; Tsur and Rappoport, 2015). A key

aspect of the adoption of a new practice is its dis-
semination: is it used by many people, and in
many social contexts? High dissemination enables
words to achieve greater exposure among social
groups (Altmann et al., 2011), and may signal that
the innovation is positively evaluated.

In addition to social constraints, language
change is also shaped by grammatical con-
straints (D’Arcy and Tagliamonte, 2015). New
words and phrases rarely change the rules of the
game but must instead find their place in a compet-
itive ecosystem with finely-differentiated linguis-
tic roles, or “niches” (MacWhinney, 1989). Some
words become valid in a broad range of linguis-
tic contexts, while others remain bound to a small
number of fixed expressions. We therefore posit a
structural analogue to social dissemination, which
we call linguistic dissemination.

We compare the fates of such words to deter-
mine how linguistic and social dissemination each
relate to word growth, focusing on the adoption of
nonstandard words in the popular online commu-
nity Reddit. The following hypotheses are evalu-
ated:

• H1: Nonstandard words with higher ini-
tial social dissemination are more likely to
grow. Following the intuition that words re-
quire a large social base to succeed, we hy-
pothesize a positive correlation between so-
cial dissemination and word growth.

• H2-weak: Nonstandard words with higher
linguistic dissemination in the early phase
of their history are more likely to grow.
This follows from work in corpus linguis-
tics showing that words and grammatical pat-
terns with a higher diversity of collocations
are more likely to be adopted (Ito and Taglia-
monte, 2003; Partington, 1993).

you’re funny af

it’s hot af

sweet af bror/Atlanta

r/SanFrancisco

r/Chicago

Does the social context of a word influence its 
adoption more than its linguistic context?

? afaf

▶ Does the social context of a word influence its adoption more
than its linguistic context?

▶ Use unique n-gram counts to measure dissemination:
the diversity of linguistic contexts in which a word appears

▶ How do communities (e.g. r/x,y,z) predict word usage?
(Lucy & Bamman, 2021)
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LMs as Psycholinguistic Subjects

“Wait...Maybe I find the models interesting?”

▶ Can we use linguistic tests to understand them better?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen1,2 Emmanuel Dupoux1

LSCP1 & IJN2, CNRS,
EHESS and ENS, PSL Research University

{tal.linzen,
emmanuel.dupoux}@ens.fr

Yoav Goldberg
Computer Science Department

Bar Ilan University
yoav.goldberg@gmail.com

Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).
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Agreement attraction errors

Training objective Sample input Training signal Prediction task Correct answer

Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL

Verb inflection The keys to the cabinet [is/are] PLURAL SINGULAR/PLURAL? PLURAL

Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL

Language model The keys to the cabinet are P (are) > P (is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

only people is a plausible subject for eat; the network
can use this information to infer that the correct form
of the verb is eat is rather than eats.

This objective is similar to the task that humans
face during language production: after the speaker
has decided to use a particular verb (e.g., write), he
or she needs to decide whether its form will be write
or writes (Levelt et al., 1999; Staub, 2009).

Grammaticality judgments: The previous objec-
tives explicitly indicate the location in the sentence in
which a verb can appear, giving the network a cue to
syntactic clause boundaries. They also explicitly di-
rect the network’s attention to the number of the verb.
As a form of weaker supervision, we experimented
with a grammaticality judgment objective. In this
scenario, the network is given a complete sentence,
and is asked to judge whether or not it is grammatical.

To train the network, we made half of the examples
in our training corpus ungrammatical by flipping the
number of the verb.10 The network read the entire
sentence and received a supervision signal at the end.
This task is modeled after a common human data col-
lection technique in linguistics (Schütze, 1996), al-
though our training regime is of course very different
to the training that humans are exposed to: humans
rarely receive ungrammatical sentences labeled as
such (Bowerman, 1988).

Language modeling (LM): Finally, we experi-
mented with a word prediction objective, in which
the model did not receive any grammatically relevant
supervision (Elman, 1990; Elman, 1991). In this sce-
nario, the goal of the network is to predict the next
word at each point in every sentence. It receives un-

10In some sentences this will not in fact result in an ungram-
matical sentence, e.g. with collective nouns such as group, which
are compatible with both singular and plural verbs in some di-
alects of English (Huddleston and Pullum, 2002); those cases
appear to be rare.

labeled sentences and is not specifically instructed to
attend to the number of the verb. In the network that
implements this training scenario, RNN activation
after each word is fed into a fully connected dense
layer followed by a softmax layer over the entire
vocabulary.

We evaluate the knowledge that the network has
acquired about subject-verb noun agreement using
a task similar to the verb inflection task. To per-
form the task, we compare the probabilities that the
model assigns to the two forms of the verb that in
fact occurred in the corpus (e.g., write and writes),
and select the form with the higher probability.11 As
this task is not part of the network’s training objec-
tive, and the model needs to allocate considerable
resources to predicting each word in the sentence, we
expect the LM to perform worse than the explicitly
supervised objectives.

Results: When considering all agreement depen-
dencies, all models achieved error rates below 7%
(Figure 4a); as mentioned above, even the noun-only
number prediction baselines achieved error rates be-
low 5% on this task. At the same time, there were
large differences in accuracy across training objec-
tives. The verb inflection network performed slightly
but significantly better than the number prediction
one (0.8% compared to 0.83% errors), suggesting
that the semantic information carried by the verb is
moderately helpful. The grammaticality judgment
objective performed somewhat worse, at 2.5% errors,
but still outperformed the noun-only baselines by a
large margin, showing the capacity of the LSTM ar-
chitecture to learn syntactic dependencies even given
fairly indirect evidence.

11One could also imagine performing the equivalent of the
number prediction task by aggregating LM probability mass over
all plural verbs and all singular verbs. This approach may be
more severely affected by part-of-speech ambiguous words than
the one we adopted; we leave the exploration of this approach to
future work.
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LMs as Psycholinguistic Subjects

“Wait...Maybe I find the models interesting?”

▶ Can we use linguistic tests to understand them better?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
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Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).

521

Transactions of the Association for Computational Linguistics, vol. 4, pp. 521–535, 2016. Action Editor: Hinrich Schütze.
Submission batch: 1/2016; Revision batch: 9/2016; Published 12/2016.

c�2016 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00115/1567418/tacl_a_00115.pdf by guest on 25 M
arch 2023

Agreement attraction errors

Training objective Sample input Training signal Prediction task Correct answer

Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL

Verb inflection The keys to the cabinet [is/are] PLURAL SINGULAR/PLURAL? PLURAL

Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL

Language model The keys to the cabinet are P (are) > P (is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

only people is a plausible subject for eat; the network
can use this information to infer that the correct form
of the verb is eat is rather than eats.

This objective is similar to the task that humans
face during language production: after the speaker
has decided to use a particular verb (e.g., write), he
or she needs to decide whether its form will be write
or writes (Levelt et al., 1999; Staub, 2009).

Grammaticality judgments: The previous objec-
tives explicitly indicate the location in the sentence in
which a verb can appear, giving the network a cue to
syntactic clause boundaries. They also explicitly di-
rect the network’s attention to the number of the verb.
As a form of weaker supervision, we experimented
with a grammaticality judgment objective. In this
scenario, the network is given a complete sentence,
and is asked to judge whether or not it is grammatical.

To train the network, we made half of the examples
in our training corpus ungrammatical by flipping the
number of the verb.10 The network read the entire
sentence and received a supervision signal at the end.
This task is modeled after a common human data col-
lection technique in linguistics (Schütze, 1996), al-
though our training regime is of course very different
to the training that humans are exposed to: humans
rarely receive ungrammatical sentences labeled as
such (Bowerman, 1988).

Language modeling (LM): Finally, we experi-
mented with a word prediction objective, in which
the model did not receive any grammatically relevant
supervision (Elman, 1990; Elman, 1991). In this sce-
nario, the goal of the network is to predict the next
word at each point in every sentence. It receives un-

10In some sentences this will not in fact result in an ungram-
matical sentence, e.g. with collective nouns such as group, which
are compatible with both singular and plural verbs in some di-
alects of English (Huddleston and Pullum, 2002); those cases
appear to be rare.

labeled sentences and is not specifically instructed to
attend to the number of the verb. In the network that
implements this training scenario, RNN activation
after each word is fed into a fully connected dense
layer followed by a softmax layer over the entire
vocabulary.

We evaluate the knowledge that the network has
acquired about subject-verb noun agreement using
a task similar to the verb inflection task. To per-
form the task, we compare the probabilities that the
model assigns to the two forms of the verb that in
fact occurred in the corpus (e.g., write and writes),
and select the form with the higher probability.11 As
this task is not part of the network’s training objec-
tive, and the model needs to allocate considerable
resources to predicting each word in the sentence, we
expect the LM to perform worse than the explicitly
supervised objectives.

Results: When considering all agreement depen-
dencies, all models achieved error rates below 7%
(Figure 4a); as mentioned above, even the noun-only
number prediction baselines achieved error rates be-
low 5% on this task. At the same time, there were
large differences in accuracy across training objec-
tives. The verb inflection network performed slightly
but significantly better than the number prediction
one (0.8% compared to 0.83% errors), suggesting
that the semantic information carried by the verb is
moderately helpful. The grammaticality judgment
objective performed somewhat worse, at 2.5% errors,
but still outperformed the noun-only baselines by a
large margin, showing the capacity of the LSTM ar-
chitecture to learn syntactic dependencies even given
fairly indirect evidence.

11One could also imagine performing the equivalent of the
number prediction task by aggregating LM probability mass over
all plural verbs and all singular verbs. This approach may be
more severely affected by part-of-speech ambiguous words than
the one we adopted; we leave the exploration of this approach to
future work.
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A Final Note: A Word of Caution

▶ LMs are sensitive to statistical regularities in language data...
▶ Bias: treating language behavior as ground truth

(Bolukbasi et al. 2016)
▶ Exclusion/discrimination: what kind of data is included?

(Bender et al. 2019)
▶ Privacy: whose data and how do we get it?

(Huang & Paul 2019)
▶ Environmental and financial cost

(Strubell et al. 2019)
▶ And more!

▶ Reflect on social impact while conducting research!
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The End (?)
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N-Grams Limits

LMs assign probabilities to sequences of words.

▶ n-Gram LMs: use local contexts for sequence prediction.
▶ Struggle to generalize to novel contexts
▶ Struggle with long distance relations (Markov assumption)

▶ Spoilers: Neural LMs...
▶ ...might help with these issues

▶ Incorporate word similarity based on distributional information
▶ More complex approximation of sentential dependencies

17
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Generalizing to Novel Contexts

Imagine our model has seen sequences like:

I have to make sure that the cat gets fed.
Pearl’s parrot gets fed every day.

Then we want to complete the following:

I forgot to make sure that the dog gets

▶ It would be great if the model could take advantage of the
similarity between dog,cat,parrot to predict fed!

18
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From Counts to Vector Spaces

The dog barked at the cat. The cat ran away. The dog
ran after the cat. The dog kept barking. He also kept
running.

2-Dimensional Vector Space with dog and cat

dog

cat

bark

run

dog cat bark run

dog - 2 2 1
cat 2 - 1 2

bark 2 1 - 0
run 1 2 0 -

Semantic similarity as angle between
vectors:

▶ bark more closely related to dog

▶ run more closely related to cat
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Long-distance Dependencies in Language

▶ Word choice can be influenced by words that are very far away.

Subject-verb agreement

▶ The key to the cabinet is on the table.

▶ The keys to the cabinets are on the table.

▶ The key to the cabinets is/are on the table.

▶ The keys to the cabinet is/are on the table.

▶ Observation: humans get those “wrong” sometimes...

▶ It’s not just about complex “syntactic” dependencies

I spread like strawberries, I climb like peas and beans

I’ve been sucking it in so long, That I’m busting at the seams

20
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A Quick Excursus: The Perceptron

The Perceptron: A Mini-Version of a Neural Network

▶ input layer: neurons that are sensitive to input

▶ output layer: neurons that represent output values

▶ connections: weighted links between input and output layer

▶ most activated output neuron represents decision

DearHi Emily

ham spam

0 53 110 0

21



Perceptron Activation for Hi Dear

DearHi Emily

ham spam

0 53 110 0
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Perceptron Activation for Hi Dear Emily

DearHi Emily

ham spam

0 53 110 0
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Putting Things Together: Neural LMs

…

I

Climb

Like

Peas

And

___

…

p(all | …)

…

p(beans | …)

…

p(do | …)

…

p(whale | …)

…

p(zebra | …)

Embeddings 

The input is now not words 
but their distributional 

representations

Hidden Layer 

Derives approximations 
from more complex 

“contexts” 

Output Layer 

This makes probability 
predictions about 
upcoming word(s) 24



A Bit More on Conditional Probability

▶ We said we are interested in P (late|is)

P (A|B) =
P (A,B)

P (B)
AB A|B

▶ E.g. P (blue|■) = 2/5

AB A|B

25



Estimating Bigram Probabilities: MLE

Ok but where do we get probabilities from?

▶ One possibility: Counts (Maximum Likelihood Estimate)!
▶ For a unigram:

P (wn) =
count(wn)∑
w∈V count(w)

▶ MLE of conditional probability for bigrams:

P (wn|wn−1) =
count(wn, wn−1)

count(wn−1)

▶ Note that the normalization factor is different than what we
did for pure bigram frequency counts (which gave us an
estimate of joint probability for each bigram)!
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Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

▶ String

when buffalo buffalo buffalo buffalo buffalo buffalo

▶ Bigram token list

when buffallo, buffalo buffalo, buffalo buffalo, buffalo buffalo,
buffalo buffalo, buffalo buffalo

▶ Bigram counts and frequencies

1 when buffalo: 1 ⇒ 1
6 = 16.7%

2 buffalo buffalo: 5 ⇒ 5
6 = 83.3%

27
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Ok, NOW Some Formulas

P (wn|w1w2 · · ·wn−1)

P (late|I will text you if the train is) P (lazy|I will text you if the train is)
▶ Lots of possible sentences!
▶ Simplifying assumption:

P (wn|w1w2 . . . wn−2wn−1) ≈ P (wn|wn−2wn−1)

P (late|I will text you if the train is) ≈ P (late|train is)

The n-Gram Hypothesis (aka Markov Assumption)

One can reliably predict the next word based on
the preceding n− 1 words.

28
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An Observation on Frequencies: Zipf’s Law

▶ Word models care about
word frequency.

▶ But there is a problem. . .

Zipf’s Law

The frequency of a type is
inversely proportional to its rank.

In Plain English

The most frequent word is

▶ 2 times as common as the 2nd most frequent word,

▶ 3 times as common as the 3rd most frequent word,

▶ and so on.
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An Example from. . . the NBA?
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Visualizing Zipf Distributions
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Zipf’s Law is Everywhere. . .

▶ A distribution is probably Zipfian if
▶ there is a long neck:

a few types make up the majority of tokens,
▶ there is a long tail:

most types only have 1 token (hapax legomenon)

▶ Surprisingly, Zipf’s Law shows up in tons of places:
▶ size of large cities in a country
▶ citations for academic papers
▶ frequencies of last names
▶ frequencies of weekdays in text

32



. . . Even in Language!
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An Important Consequence of Zipf’s Law

▶ Texts mostly consist of stop words.

▶ Hence it can be difficult to get representative counts
for non-stop words.

Sparse Data Problem

▶ Most of the data is not informative.

▶ You need tons of data to have enough useful data.

Example

▶ Most models require corpora with at least
a few million sentences.

▶ Really good models (e.g. Google translate) use
billions of data points.
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Defining Larger n-Grams

n-gram a contiguous sequence of n words

n Name Example

1 unigram John
2 bigram John to
3 trigram John to be
4 4-gram John to be in
5 5-gram John to be in the

Example

String

John and Marie are not Bill and Sue
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How long can n-grams be?

▶ It is tempting to move to longer and longer n-grams
in order to handle long-distance dependencies.

▶ But this has two problems:

data sparsity longer n-grams require too much data
storage needs longer n-grams require lots of storage

▶ Data sparsity is much more severe than storage needs.
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Sparse data: A simple calculation

Words bigrams trigrams 5-grams 6-grams
10 100 1000 10,000 100,000

100 10,000 1,000,000 10,000,000,000 1,000,000,000,000
10,000 108 1012 1020 1024

25,000 6.3× 108 1.6× 1013 9.7× 1021 2.4× 1026

Some comparison values

4.3× 1017 number of seconds since the Big Bang

5× 1022 number of stars in observable universe

1024 milliliters of water in the Earth’s oceans

8.8× 1026 diameter of observable universe, in meters

1080 number of atoms in observable universe

▶ Conclusion: with large n, most n-grams are
never encountered in a corpus ⇒ frequency 0
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Things get worse: A more realistic estimate

▶ The Linux dictionary american-english-insane has
650,000 entries.

▶ This makes the numbers much worse.
Can you guess how many 5-grams there are then?

116 octillion ≈ 1029

1029 is larger than the number of shotglasses it takes to
drain the Earth’s oceans over 2000 times.
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Evaluating Language Models: Perplexity

The perplexity of a language model is defined as the inverse of
the probability of the test set, normalized by the number of tokens
(N) in the test set.

A LM with lower perplexity is better because it assigns a higher
probability to the unseen test corpus. But note that two LMs can
be compared wrt to perplexity iff they use the same vocabulary!

▶ Trigram models have lower perplexity than bigram models,
etc.
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Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher probability to unseen
text.
This doesn’t necessarily tell us which LM is better for a specific
task.
Task-based evaluation:

▶ Train model A, plug it into your system for performing task T

▶ Evaluate performance of system A on task T

▶ Train model B, plug it in, evaluate system B on same task T

▶ Compare scores of system A and system B on task T.

40



Extrinsic Evaluation: Word Error rate 1

1slide adapted from J. Hockenmaier
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