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Language Models assign probabilities to sequences of words.
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Word Prediction Everywhere

An experiment:
» Open any chat/messaging app you use frequently
> Start typing
| wish this lecture was ____

» What do you get after was?



Word Prediction Everywhere

An experiment:

» Open any chat/messaging app you use frequently
> Start typing

| wish this lecture was ____
» What do you get after was?

» The same idea also applies also to full sentences!

IGEER Autocomplete Interview &
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» Humans do it too!

Please turn your homework ____
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Why is automatizing this useful?

> speech recognition

» spell-checking/grammatical error correction
» machine translation
>

maybe even more direct linguistics research ...



Word Prediction Everywhere [cont.]

» Humans do it too!
Please turn your homework ____

Why is automatizing this useful?
> speech recognition
» spell-checking/grammatical error correction
» machine translation

» maybe even more direct linguistics research ...

This is where Language Models (LMs) enter the picture!
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We want the most likely completion(s)...

Uhm, how do we figure out what is most likely?

P> A naive idea:
— Most likely = Most frequent word



Tackling Next Word Prediction

We want the most likely completion(s)...

Uhm, how do we figure out what is most likely?

P> A naive idea:
— Most likely = Most frequent word

» Approach:

Collect sufficiently large sample of texts (corpus)

For each word (type), count how often it occurs in
the entire sample (= its number of tokens).

Calculate the frequency of the word in the sample:

ber of tok f word
freq(word, sample) = number of tokens of wor

word length of whole sample



Example calculation

Sample: 1000 words long Words: be, bed, bee, bell

Type be bed bee bell
Tokens 13 2 0 3

freq(be) = 1to= = 1.3% freq(bee) = %= = 0.0%
freq(bed) = 25 = 0.2%  freq(bell) = == = 0.3%
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Example calculation

Sample: 1000 words long Words: be, bed, bee, bell

Type be bed bee bell
Tokens 13 2 0 3

freq(be) = 1to= = 1.3% freq(bee) = -2 = 0.0%
freq(bed) = 25 = 0.2%  freq(bell) = == = 0.3%

Ordered predictions: be, bell, bed, bee



Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...
» Most likely = Most frequent word?
> BUT! Word usage varies by context!

tested testing testimony

| have
| have been
| have the
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Tackling Next Word Prediction [cont.]

We want the most likely completion(s)...
» Most likely = Most frequent word?
> BUT! Word usage varies by context!

tested testing testimony

| have hi low mid
| have been hi hi low
| have the low low hi

» The frequency of words is not enough,
we need frequencies of sequences of words = n-gram LMs



Defining n-Grams

n-gram a contiguous sequence of n words

n Name Example

1 unigram John

2 bigram  John to

3 trigram  John to be

4 4-gram  John to be in

5 b5-gram  John to be in the

String

John and Marie are not Bill and Sue
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N-Gram LMs for Next Word Prediction

Frequencies can be computed and used for n-grams, too.
— we still need a representative corpus...

> Trigram frequencies
bus is late  30% train is late 15%
bus is lovely 25% train is lovely 8%
busis lazy  10% train is lazy 2%

» Input » Sorted completions
| will text you if the train is __

» To predict a word w:
Needed resources: corpus
KB Compute frequencies for all n-grams
Look at previous n — 1 words
A Find completions that maximize n-gram probability
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N-Gram LMs for Next Word Prediction

Frequencies can be computed and used for n-grams, too.
— we still need a representative corpus...

> Trigram frequencies
bus is late  30% train is late 15%
bus is lovely 25% train is lovely 8%
busis lazy  10% train is lazy 2%

» Input » Sorted completions
| will text you if the train is __ late, lovely, lazy

» To predict a word w:
Needed resources: corpus
HA Compute frequencies for all n-grams
Look at previous n — 1 words
[ Find completions that maximize n-gram probability
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The preceding n — 1 words reliably predict the next word.

P(wp|wiws ... wp—owp—1) = P(wp|wp—2wp,—1)

P(late|l will text you if the train is) ~ P(late|train is)
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Linguistic Evaluation

The n-Gram Hypothesis (aka Markov Assumption)

The preceding n — 1 words reliably predict the next word.

P(wp|wiws ... wy—owy, 1) & P(wy|w, 2w, 1)

P(late|l will text you if the train is) ~ P(late|train is)

» The n-gram hypothesis is not quite satisfying, though.
We are not going to see all possible words in all contexts

Many dependencies in language are not local

This is where Neural Networks LMs come in handy...
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LMs as Tools for Psycholinguistics

Jacobs, De Santo, and Grobol (2023)

Zeugma The architect bit the lime and the dust
Literal The architect bit the lime and the apple

> We can use LMs to generate literal continuations
The architect bit the ____
» Maze Task (Boyce & Levy, 2021):
Use LMs to generate low probability foils

11
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LMs as Tools for Sociolinguistics

Making “fetch” happen: The influence of social and linguistic context on
nonstandard word growth and decline

Ian Stewart and Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

r/SanFrancisco you’re funny af

af —— r/Chicago 9 af — it’s hot af

r/Atlanta sweet af bro

» Does the social context of a word influence its adoption more
than its linguistic context?

» Use unique n-gram counts to measure dissemination:
the diversity of linguistic contexts in which a word appears

» How do communities (e.g. r/x,y,z) predict word usage?

(Lucy & Bamman, 2021)
12



LMs as Psycholinguistic Subjects

“Wait...Maybe | find the models interesting?”

» Can we use linguistic tests to understand them better?
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LMs as Psycholinguistic Subjects

“Wait...Maybe | find the models interesting?”

» Can we use linguistic tests to understand them better?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'? Emmanuel Dupoux! Yoav Goldberg
LSCP' & IIN?, CNRS, Computer Science Department
EHESS and ENS, PSL Research University Bar Ilan University
{tal.linzen, yoav.goldberglgmail .com

emmanuel .dupoux}@ens. fr

ement attraction errors

Training objective  Sample input Training signal  Prediction task Correct answer
Number prediction  The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL

Verb inflection The keys to the cabinet [is/are] ~ PLURAL SINGULAR/PLURAL? PLURAL
Grammaticality The keys to the cabinet are here. - GRAMMATICAL  GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL
Language model  The keys 1o the cabinet are P(are) > P(is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

13



A Final Note: A Word of Caution

> |LMs are sensitive to statistical regularities in language data...
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A Final Note: A Word of Caution

> LMs are sensitive to statistical regularities in language data...
> Bias: treating language behavior as ground truth
(Bolukbasi et al. 2016)
» Exclusion/discrimination: what kind of data is included?
(Bender et al. 2019)
» Privacy: whose data and how do we get it?
(Huang & Paul 2019)
» Environmental and financial cost
(Strubell et al. 2019)
» And morel!

P Reflect on social impact while conducting research!

14






Appendix
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LMs assign probabilities to sequences of words.
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LMs assign probabilities to sequences of words.
» n-Gram LMs: use local contexts for sequence prediction.

» Struggle to generalize to novel contexts
> Struggle with long distance relations (Markov assumption)
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LMs assign probabilities to sequences of words.

» n-Gram LMs: use local contexts for sequence prediction.
» Struggle to generalize to novel contexts
> Struggle with long distance relations (Markov assumption)
» Spoilers: Neural LMs...
» ...might help with these issues

P Incorporate word similarity based on distributional information
> More complex approximation of sentential dependencies

17



Generalizing to Novel Contexts

Imagine our model has seen sequences like:

| have to make sure that the cat gets fed.
Pearl’s parrot gets fed every day.
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Generalizing to Novel Contexts

Imagine our model has seen sequences like:

| have to make sure that the cat gets fed.
Pearl’s parrot gets fed every day.

Then we want to complete the following:

| forgot to make sure that the dog gets ____

> It would be great if the model could take advantage of the
similarity between dog,cat,parrot to predict fed!

18



From Counts to Vector Spaces

The dog barked at the cat. The cat ran away. The dog
ran after the cat. The dog kept barking. He also kept

running.

2-Dimensional Vector Space with dog and cat

dog ‘ dog cat bark run
dog | - 2 2 1
T cat | 2 1 2
bark bark | |2 1 - 0
run 1 2 0 -

1 Semantic similarity as angle between
vectors:

tb bark more closely related to dog
‘ 1 ca

» run more closely related to cat

19



Long-distance Dependencies in Language

» Word choice can be influenced by words that are very far away.

Subject-verb agreement

» The key to the cabinet is on the table.

» The keys to the cabinets are on the table.
» The key to the cabinets is/are on the table.
» The keys to the cabinet is/are on the table.

» Observation: humans get those "wrong” sometimes...

20
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A Quick Excursus: The Perceptron

The Perceptron: A Mini-Version of a Neural Network

input layer: neurons that are sensitive to input
output layer: neurons that represent output values
connections: weighted links between input and output layer

most activated output neuron represents decision

21



Perceptron Activation for Hi Dear
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Perceptron Activation for Hi Dear Emily

23
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Embeddings

The input is now not words
but their distributional
representations

/

p(zebra] ...)
Hidden Layer Output Layer
Derives approximations This makes probability
from more complex predictions about
“contexts” upcoming word(s)

p@ll]...)

—> p(beans| ...

—> p(do]..)

— p(whale|...)
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A Bit More on Conditional Probability

» We said we are interested in P(latelis)

.

» E.g. P(blue|®)=2/5

AA
A AA

25




Estimating Bigram Probabilities: MLE

Ok but where do we get probabilities from?

» One possibility: Counts (Maximum Likelihood Estimate)!
» For a unigram:

count(wn,)

Plwn) = Y wey count(w)

» MLE of conditional probability for bigrams:

count(Wy,, wp_1)

P q) =
(wnwn—) count(wy_1)

» Note that the normalization factor is different than what we
did for pure bigram frequency counts (which gave us an
estimate of joint probability for each bigram)!

26



Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

> String
when buffalo buffalo buffalo buffalo buffalo buffalo

> Bigram token list

> Bigram counts and frequencies
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Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

> String
when buffalo buffalo buffalo buffalo buffalo buffalo

> Bigram token list
when buffallo, buffalo buffalo, buffalo buffalo, buffalo buffalo,
buffalo buffalo, buffalo buffalo

> Bigram counts and frequencies

when buffalo: 1 = 1 =16.7%
A buffalo buffalo: 5 = % = 83.3%

27



Ok, NOW Some Formulas

P(wp|wiws -+ - wp—1)

P(late|l will text you if the train is) P(lazy|l will text you if the train is)
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Ok, NOW Some Formulas

P(wp|wiws -+ - wp—1)

P(late|l will text you if the train is) P(lazy|l will text you if the train is)
> Lots of possible sentences!

» Simplifying assumption:

P(wp|wrws ... wy—owy,—1) & P(wy|wy,—2w,—1)

P(late|l will text you if the train is) ~ P(late|train is)

The n-Gram Hypothesis (aka Markov Assumption)

One can reliably predict the next word based on
the preceding n — 1 words.

28



An Observation on Frequencies: Zipf's Law

» Word models care about
word frequency.

» But there is a problem. ..

Zipf's Law

The frequency of a type is
inversely proportional to its rank.
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An Observation on Frequencies: Zipf's Law

» Word models care about
word frequency.

» But there is a problem. ..

Zipf's Law

The frequency of a type is
inversely proportional to its rank.

In Plain English

The most frequent word is
» 2 times as common as the 2nd most frequent word,

» 3 times as common as the 3rd most frequent word,

> and so on.

29
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Visualizing Zipf Distributions

4-?‘ xx

N

+——— QUERY FREQUENCY -

QUERY RANK ————— %
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Zipf's Law is Everywhere. ..

» A distribution is probably Zipfian if
» there is a long neck:
a few types make up the majority of tokens,
> there is a long tail:
most types only have 1 token (hapax legomenon)

» Surprisingly, Zipf's Law shows up in tons of places:

P size of large cities in a country
P citations for academic papers
» frequencies of last names

» frequencies of weekdays in text
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An Important Consequence of Zipf's Law

» Texts mostly consist of stop words.

» Hence it can be difficult to get representative counts
for non-stop words.

Sparse Data Problem

» Most of the data is not informative.

» You need tons of data to have enough useful data.
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An Important Consequence of Zipf's Law

» Texts mostly consist of stop words.

» Hence it can be difficult to get representative counts
for non-stop words.

Sparse Data Problem

» Most of the data is not informative.

» You need tons of data to have enough useful data.

» Most models require corpora with at least
a few million sentences.

> Really good models (e.g. Google translate) use
billions of data points.

34



Defining Larger n-Grams

n-gram a contiguous sequence of n words

n Name Example

1 unigram John

2 bigram  John to

3 trigram  John to be

4 4-gram  John to be in

5 b5-gram  John to be in the

String

John and Marie are not Bill and Sue
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How long can n-grams be?

> It is tempting to move to longer and longer n-grams
in order to handle long-distance dependencies.

» But this has two problems:
data sparsity longer n-grams require too much data
storage needs longer n-grams require lots of storage

» Data sparsity is much more severe than storage needs.
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Sparse data: A simple calculation

Words bigrams  trigrams 5-grams 6-grams
10 100 1000 10,000 100,000
100 10,000 1,000,000 10,000,000,000 1,000,000,000,000
10,000 108 10'2 10%° 10%
25,000 6.3 x 10 1.6 x 10 9.7 x 10% 2.4 x 10%

Some comparison values

4.3 x 10'" number of seconds since the Big Bang
5 x 10?? number of stars in observable universe
10%* milliliters of water in the Earth’s oceans
8.8 x 10%° diameter of observable universe, in meters

1089 number of atoms in observable universe

» Conclusion: with large n, most n-grams are
never encountered in a corpus = frequency 0
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Things get worse: A more realistic estimate

» The Linux dictionary american-english-insane has
650,000 entries.

» This makes the numbers much worse.
Can you guess how many 5-grams there are then?
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Things get worse: A more realistic estimate

» The Linux dictionary american-english-insane has
650,000 entries.

» This makes the numbers much worse.
Can you guess how many 5-grams there are then?

116 octillion ~ 102°

10%? is larger than the number of shotglasses it takes to
drain the Earth’s oceans over 2000 times.
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Evaluating Language Models: Perplexity

The perplexity of a language model is defined as the inverse of

the probability of the test set, normalized by the number of tokens
(N) in the test set.

A LM with lower perplexity is better because it assigns a higher
probability to the unseen test corpus. But note that two LMs can
be compared wrt to perplexity iff they use the same vocabulary!

» Trigram models have lower perplexity than bigram models,
etc.
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Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher probability to unseen
text.

This doesn't necessarily tell us which LM is better for a specific
task.

Task-based evaluation:

» Train model A, plug it into your system for performing task T
» Evaluate performance of system A on task T
» Train model B, plug it in, evaluate system B on same task T

» Compare scores of system A and system B on task T.

40



Extrinsic Evaluation: Word Error rate !

Originally developed for speech recognition.

How much does the predicted sequence of words
differ from the actual sequence of words in the correct
transcript?

Insertions + Deletions + Substitutions

WER =
Actual words in transcript
Insertions: “eat lunch” — “eat a lunch”
Deletions: “see a movie” — “see movie”

Substitutions: “drink ice tea”— “drink nice tea”

lslide adapted from J. Hockenmaier
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