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The Talk in a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers’verification

I insights into quantifiers’ interpretation

I link between formal language theory and model theory

In This Talk: Giving up the SA perspective

I But: formal language theory is richer that automata theory

I Coming back to formal language theory
→ subregular hierarchy & quantifier languages

Consequences

I complexity independent of the recognition mechanism

I cross-domain parallels, cognitive predictions and new
experimental paradigms!
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Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Generalized Quantifiers

Generalized quantifier Q(A,B):

I two sets A and B as arguments

I returns truth value (0, 1)

Example

(1) Every student cheated.

I every(A,B) = 1 iff A ⊆ B

I student: John, Mary, Sue

I cheat: John, Mary

I student 6⊆ cheat⇒ every(student, cheat) = 0

I “Every student cheated” is false.
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Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Binary Strings
I The language of A is the set of all permutations of A.

Example

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary

Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

I Now replace every a ∈ A by a truth value:
1 if a ∈ B
0 if a /∈ B

I The result is the binary string language of A under B.

Example

student John, Mary, Sue
cheat John, Mary

binary strings 110, 101, 011
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Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Quantifier Languages (van Benthem 1986)
I We can associate each quantifier Q with a language in {0, 1}∗
⇒ Q accepts only binary strings of specific shape

I This is its quantifier language.

Example: every

I every(A,B) holds iff A ⊆ B

I So every element of A must be mapped to 1.

I L(every) = {1}∗

Example: some

I some(A,B) holds iff A ∩ B 6= ∅
I Some element of A must be mapped to 1.

I L(some) = {0, 1}∗ 1 {0, 1}∗
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Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy of String Languages

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Phonology
Kaplan and Kay (1994)

•

Syntax
Shieber (1985)

•

Morphology
Karttunen et al. (1992)

•
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Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

(finite)

Finite-State Automaton

Push-Down Automaton

Linear-bounded Automaton
Turing Machine

Semantic Automata (van Benthem 1986, Mostowski 1998)

We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.
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Aristotelian Quantifiers are FSA-recognizable
Reminder: every

I every(A,B) holds iff A ⊆ B

I So every element of A must be mapped to 1.

I L(every) = {1}∗

q0start q1
0

1 0

1

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

True
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111

7



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Aristotelian Quantifiers are FSA-recognizable
Reminder: every

I every(A,B) holds iff A ⊆ B

I So every element of A must be mapped to 1.

I L(every) = {1}∗

q0start q1
0

1 0

1

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

True
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111

7



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Other FSA-recognizable quantifiers

I Parity quantifiers: An even number

q0start q1

1

0

1

0

I Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0

1
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Proportional Quantifiers

I most(A, B) holds iff |A ∩ B| > |A− B|
I Lmost := {w ∈ {0, 1}∗ : |1|w > |0|w}
I There is no finite automaton recognizing this language.

I We need internal memory.
⇒ push-down automata: two states + a stack
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A Hierarchy of Quantifiers’ Complexity

{All, Some, Even, Odd, At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity?

10
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Let’s Look at the Automata One More Time
I Aristotelian quantifiers: Some

q0start q1
1

0 0

1

I Parity quantifiers: An even number

q0start q1

1

0

1

0

I Cardinal quantifiers: At least 3

q0start q1 q2 q3
1

0

1

0

1

0 0

1
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A Hierarchy of Quantifiers’ Complexity

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

Are these all of equivalent complexity? (Szymanik 2016)

I Cyclic vs acyclic automata

I The number of states matters

I But: Complexity = succinctness of automata?

Reminder

It’s all grounded in quantifier languages

I FSA recognizable quantifiers → Regular quantifier languages
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Chomsky Hierarchy of String Languages (Reprise)

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

FSA
Aristotelian

Cardinal
Parity

•

PDA
Proportional

•
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The Subregular Hierarchy

Often Forgotten:

I hierarchy of subregular languages
(McNaughton&Papert 1971), (Rogers et

al. 2010)

A Richness of Results

I Phonology is subregular
(Heinz&Idsardi 2013, Heinz 2015)

I Morphotactics (and Morphology?) is
subregular
(Aksënova et al. 2016, Chandlee 2016,

Aksënova&De Santo 2017)
I Syntax? (Graf&Heinz 2015)

Regular

SF

LTT

LT

SL

PT

SP

TSL

TSL
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Strictly Local and Tier-based Strictly Local

Strictly Local (SL)

I SLk grammars are lists of forbidden k-grams;

Tier-based Strictly Local (TSL)

I TSL is a minimal extension of SL, inspired by phonological
tiers;

I define a subset T of the string alphabet;
I a grammar is a list of strictly k-local constraints over T

15
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Subregular Quantifiers: Every is SL
Reminder: Every

I every(A,B) holds iff A ⊆ B

I L(every) = {1}∗

I Eg. Every student cheated.

False
student John, Mary, Sue

cheat John, Mary
binary strings 110, 101, 011

grammar ∗0

o 1 1 0 n
F

True
student John, Mary, Sue

cheat John, Mary, Sue
binary strings 111

grammar ∗0

o 1 1 1 n
T
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Subregular Quantifiers: Some is SL?

Reminder: some

I some(A,B) holds iff A ∩ B 6= ∅
I L(some) = {0, 1}∗ 1 {0, 1}∗

I Eg. Some student cheated.

False
student John, Mary, Sue

cheat
binary strings 000

grammar ∗0

00 ??

o 0 0

0n

0 n
F

True
student John, Mary, Sue

cheat John
binary strings 100,010,001

grammar ∗0

00 ??

o 0 0

0n

1 n
FT

17
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Parity Quantifiers?

An even number

I An even number(A,B) holds iff |A ∩ B| ≥ 2n, with n > 0

I L(even) = {w ∈ 0, 1∗s.t.|1|w ≥ 2n, with n > 0}

Is L(even) a TSL language?

F 1 1 1 0 0

1 1 1
F

T 1 1 1 1 0

1 1 1 1
FT

F 1 1 1 1 1

1 1 1 1 1
FTF

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).
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Characterization of Quantifier Languages: Summary

Language Constraint Complexity Subregular Grammar
every |0|w = 0 SL-1 S := {¬0}

no |1|w = 0 SL-1 S := {¬1}
some |1|w ≥ 1 TSL-2 T := {1}, S := {¬on}

not all |0|w ≥ 1 TSL-2 T := {0}, S := {¬on}
(at least) n |1|w ≥ n TSL-(n+ 1) T := {1}, S :=

{
¬o 1kn

}
k≤n

(at most) n |1|w ≤ n TSL-(n+ 1) T := {1}, S :=
{
¬1k+1

}
all but n |0|w = n TSL-(n+ 1) T := {0}, S :=

{
¬0n+1,¬o 0kn

}
k≤n

even number |1|w = 2n, n ≥ 0 regular impossible
most |1|w ≥ |0|w context-free impossible
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A Complexity Hierarchy (Revisited)
I Semantic Automata predictions

{All, Some} < {Even, Odd} < {At least n, At most n} < {Less than half, More than half, Most}

FSA PDA

I Subregular characterization predictions

{All} < {Some, At least n, At most n} < {Even, Odd} < {Less than half, More than half, Most}

SL TSL REG CF

Automata vs Quantifier Languages

I cardinal < parity;

I complexity independent of the specific recognition machine

I what’s the cognitive reality of these predictions?
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Formal Complexity and Cognition

I FO-quantifiers vs higher order quantifiers
I neuroimaging (McMillan et al. 2005, Clark & Grossman 2007)
I patient literature (McMillan et al. 2009, Troiani et al 2009,)

I Psycholinguistic evidence for semantic automata
I many behavioral findings (Szymanik & Zajenkowsky 2009,

2010, Steinert-Threlkeld & Icard 2013, i.a.)
I for a survey: Szymanik (2016)

I Subregular hierarchy and cognition
I general discussion(Rogers et al. 2013)
I animal vs human cognition (Pulum & Rogers 2006, Rogers &

Pullum 2011)
I learnability and acquisition (Lai 2015, Avcu 2017)
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Testing the Subregular Predictions

+ +

RT

<Q> dots are <C>

500 ms 4000 ms

of the quantifier “many,” for example, as compared to its close relatives like “more than
half,” is greater in terms of interindividual variability. Hackl (2009) in his investigation
put forth that the proportional quantifier “most” triggers a distinct behavioral strategy when
compared to “more than half,” which can be attributed to the semantic differences between
them. “Most” can be assumed to be the superlative form of “many” while “more than half”
is its comparative form. From a numerical perspective, for “more than half” there is a
fixed reference to compare between sets, namely, “half.” Therefore, although the compre-
hension strategy for “more than half” triggers complex strategies, one could assume simi-
larity in the processing steps across individuals. However, for “many” no such reference is
provided externally and thus could depend on the subjective interpretation of each individ-
ual regarding its meaning. It is conceivable that participants might adopt the most common
strategy to focus on the reference set, that is, the target color mentioned in the quantifier

(A)

(B)

Fig. 1. Experimental design of the study (A). Auditory stimulus sentences included numerical quantifiers (at
least seven, at least thirteen, at most seven, and at most thirteen) or proportional quantifiers (many, few) and
were of the type “<Quantifier> of the circles are <color>,” followed by a visual display, showing varied
proportions of yellow and blue circles with a constant total (n) of 20. The proportion of yellow circles and
blue circles was systematically varied, characterized by the number of circles (c) to be estimated in the target
color (TarCol) and ranging from 5 up to 15, as well as the complementary non-target color characterized by
the estimation parameter (r) ranging from 15 to 5. Time course of individual trials (B). Each trial starts with
a fixation cross, followed by the auditory sentence for 2.6 s. Then a visual display with the parametrically
varied proportions is presented for 1 s, followed by a visual mask for 2 s. Participants are asked to respond
per trial, if the auditory sentence matches the visual display or not, via a button press on one of two response
keys. RTs are recorded from the onset of the visual display until the offset of the visual mask (maximum
time for response: 3 s). The overall duration of a trial is 6.6 s.

S. Shikhare et al. / Cognitive Science 39 (2015) 1511

<Q> of the dots

Initial encoding

I McMillan et al. (2005)

Verification

Disentangling encoding from verification

I ERP → upcoming (De Santo et al, SNL2017), MEG, ...

I Pupil size ← ongoing...
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time for response: 3 s). The overall duration of a trial is 6.6 s.

S. Shikhare et al. / Cognitive Science 39 (2015) 1511

<Q> of the dots

Initial encoding

I McMillan et al. (2005)

Verification

Disentangling encoding from verification

I ERP → upcoming (De Santo et al, SNL2017), MEG, ...

I Pupil size ← ongoing...
23
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Conclusions

Tracing Back our Steps

I SA as a plausible model of quantifier complexity

I Refined by looking at weaker classes in the Chomsky hierarchy
⇒ subregular characterization of generalized quantifiers

Outcomes & Future Work

I Computational complexity and cognition
I precise, testable predictions about cognitive resources
I strong, cross-domain linking hypothesis

I Support for cross-domain subregular generalizations
I typological predictions (Graf 2017)
I insights on learnability/acquisition

I New theoretical questions
I e.g. permutation closure & subregular languages?
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An algorithm is likely to be understood more readily by
understanding the nature of the problem being solved
than by examining the mechanism (and the hardware) in
which it is embodied.

(Marr 1983, p.27)
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Logical Definability of Subregular Classes

Regular
Monadic

Second-Order Logic

Locally
Threshold Testable

Star Free
First-Order

Logic

Locally
Testable

Piecewise
Testable

Propositional
Logic

Strictly
Local

Strictly
Piecewise

Conjunction of
Negative Literals

S// < //+

⊂ ⊂
⊂⊂

⊂

⊂
TSL⊂
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Strictly Local: Example

Word-Final Devoicing is SL

I SL grammars are lists of forbidden n-grams;

I Word-Final Devoicing: voiced segments at the end of a word
are forbidden.

Word-Final Devoicing: German Example

I Grammar S := {∗zn, ∗vn, ∗dn}
I {o,n} → left and right word edge

o r a d n∗

o r a t n

ok



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Strictly Local: Example

Word-Final Devoicing is SL

I SL grammars are lists of forbidden n-grams;

I Word-Final Devoicing: voiced segments at the end of a word
are forbidden.

Word-Final Devoicing: German Example

I Grammar S := {∗zn, ∗vn, ∗dn}
I {o,n} → left and right word edge

o r a d n∗

o r a t n

ok



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Strictly Local: Example

Word-Final Devoicing is SL

I SL grammars are lists of forbidden n-grams;

I Word-Final Devoicing: voiced segments at the end of a word
are forbidden.

Word-Final Devoicing: German Example

I Grammar S := {∗zn, ∗vn, ∗dn}
I {o,n} → left and right word edge

o r a d n∗

o r a t n

ok



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Strictly Local: Example

Word-Final Devoicing is SL

I SL grammars are lists of forbidden n-grams;

I Word-Final Devoicing: voiced segments at the end of a word
are forbidden.

Word-Final Devoicing: German Example

I Grammar S := {∗zn, ∗vn, ∗dn}
I {o,n} → left and right word edge

o r a d n∗

o r a t nok



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Tier-based Strictly Local (Heinz et al. 2011)

I TSL is a minimal expansion of SL

I Inspired by phonological tiers

TSL Grammars

I a projection function E : Σ→ T ∪ λ, with T ⊆ Σ

I strictly local constraints over T
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TSL Example: Sibilant harmony in Aari

I If multiple sibilants {s, z, ÿ, S} occur in the same word, they
must all be voiceless {s, S} or voiced {z, ÿ} .

Grammar

I T := {s, z, ÿ, S}
I S := {∗ÿs, ∗sÿ, ∗sS, ∗Ss}

∗ ÿ a: e r s e

T: sibilant harmony

∗
ÿÿ ss

ÿ a: e r S eok

ok
ÿÿ SS

T: sibilant harmony
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