

Evaluating Subregular Distinctions in the Complexity of Generalized Quantifiers

Aniello De Santo Thomas Graf John E. Drury

Stony Brook University aniello.desanto@stonybrook.edu aniellodesanto.github.io

QUAD: Quantifiers and Determiners July 17–21, 2017

The Talk in a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers'verification

- insights into quantifiers' interpretation
- link between formal language theory and model theory

In This Talk: Giving up the SA perspective

- But: formal language theory is richer that automata theory
- ► Coming back to formal language theory → subregular hierarchy & quantifier languages

Consequences

- complexity independent of the recognition mechanism
- cross-domain parallels, cognitive predictions and new experimental paradigms!

The Talk in a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers'verification

- insights into quantifiers' interpretation
- link between formal language theory and model theory

In This Talk: Giving up the SA perspective

- But: formal language theory is richer that automata theory
- ► Coming back to formal language theory → subregular hierarchy & quantifier languages

Consequences

- complexity independent of the recognition mechanism
- cross-domain parallels, cognitive predictions and new experimental paradigms!

The Talk in a Nutshell

Generalized Quantifiers and Semantic Complexity

Semantic automata (SA) as a model of quantifiers'verification

- insights into quantifiers' interpretation
- link between formal language theory and model theory

In This Talk: Giving up the SA perspective

- But: formal language theory is richer that automata theory
- ► Coming back to formal language theory → subregular hierarchy & quantifier languages

Consequences

- complexity independent of the recognition mechanism
- cross-domain parallels, cognitive predictions and new experimental paradigms!

1 Semantic Automata

2 Generalized Quantifiers & Subregular Languages

3 Psycholinguistic Predictions

4 Conclusions

Generalized Quantifiers

Generalized quantifier Q(A, B):

- two sets A and B as arguments
- returns truth value (0,1)

Example

(1) Every student cheated.

- every(\mathbf{A}, \mathbf{B}) = 1 iff $\mathbf{A} \subseteq \mathbf{B}$
- student: John, Mary, Sue
- cheat: John, Mary
- student $\not\subseteq$ cheat \Rightarrow every(student, cheat) = 0
- "Every student cheated" is false.

Binary Strings

• The language of **A** is the set of all permutations of **A**.

Example				
studentJohn, Mary, SueL(student)John Mary Sue, John Sue MaryMary John Sue, Mary Sue JohnSue John Mary, Sue Mary John				
 Now replace every a ∈ A by a truth value: 1 if a ∈ B 0 if a ∉ B The result is the binary string language of A under B. 				
	John, Mary, Sue John, Mary 110, 101, 011			

Binary Strings

• The language of **A** is the set of all permutations of **A**.

Example					
$\frac{\text{student}}{L(\text{student})}$	John, Mary, Sue John Mary Sue, John Sue Mary Mary John Sue, Mary Sue John Sue John Mary, Sue Mary John				
 Now replace every a ∈ A by a truth value: 1 if a ∈ B 0 if a ∉ B The result is the binary string language of A under B. 					
Example					
student cheat binary strings	John, Mary				

Quantifier Languages (van Benthem 1986)

- We can associate each quantifier Q with a language in {0,1}* ⇒ Q accepts only binary strings of specific shape
- This is its quantifier language.

Example: *every*

- every(A, B) holds iff $A \subseteq B$
- ▶ So every element of A must be mapped to 1.
- $L(every) = \{1\}^*$

Example: *some*

- some(**A**, **B**) holds iff $\mathbf{A} \cap \mathbf{B} \neq \emptyset$
- Some element of **A** must be mapped to 1.
- $L(some) = \{0, 1\}^* \, 1 \, \{0, 1\}^*$

Quantifier Languages (van Benthem 1986)

- We can associate each quantifier Q with a language in {0,1}* ⇒ Q accepts only binary strings of specific shape
- This is its quantifier language.

Example: every

- ► every(A, B) holds iff A ⊆ B
- So every element of A must be mapped to 1.
- $\blacktriangleright L(every) = \{1\}^*$

Example: *some*

- some(**A**, **B**) holds iff $\mathbf{A} \cap \mathbf{B} \neq \emptyset$
- Some element of **A** must be mapped to 1.

•
$$L(some) = \{0, 1\}^* \, 1 \, \{0, 1\}^*$$

- We can associate each quantifier Q with a language in {0,1}* ⇒ Q accepts only binary strings of specific shape
- This is its quantifier language.

Example: every

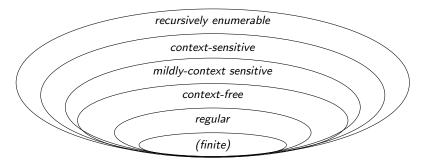
- every(A, B) holds iff $A \subseteq B$
- ▶ So every element of **A** must be mapped to 1.
- $\blacktriangleright L(every) = \{1\}^*$

Example: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- Some element of A must be mapped to 1.
- $L(\text{some}) = \{0, 1\}^* \, 1 \, \{0, 1\}^*$

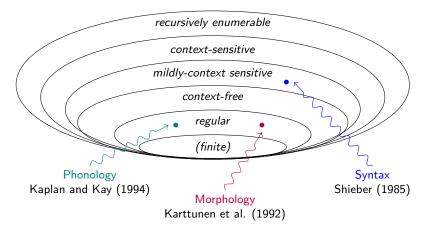
Chomsky Hierarchy of String Languages

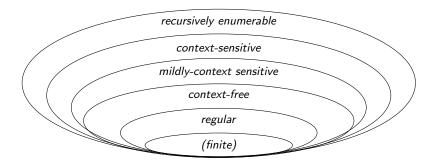
Languages (stringsets) can be classified according to the complexity of the grammars that generate them.



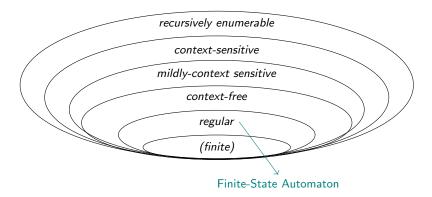
Chomsky Hierarchy of String Languages

Languages (stringsets) can be classified according to the complexity of the grammars that generate them.

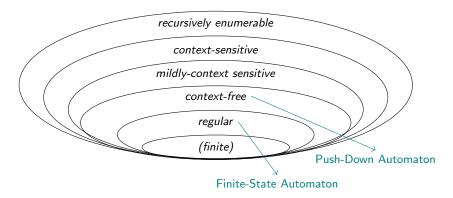




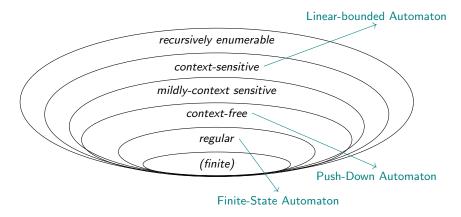
Semantic Automata (van Benthem 1986, Mostowski 1998)



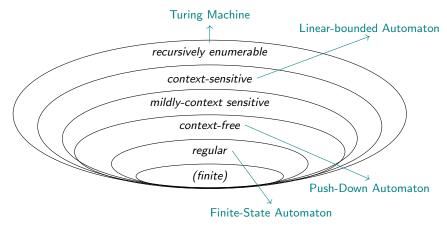
Semantic Automata (van Benthem 1986, Mostowski 1998)



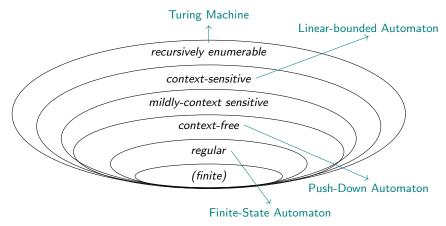
Semantic Automata (van Benthem 1986, Mostowski 1998)



Semantic Automata (van Benthem 1986, Mostowski 1998)



Semantic Automata (van Benthem 1986, Mostowski 1998)

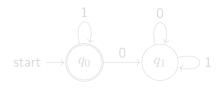


Semantic Automata (van Benthem 1986, Mostowski 1998)

Aristotelian Quantifiers are FSA-recognizable

Reminder: every

- every(A, B) holds iff $A \subseteq B$
- ▶ So every element of A must be mapped to 1.
- $L(every) = \{1\}^*$



False

student John, Mary, Sue cheat John, Mary binary strings 110, 101, 011

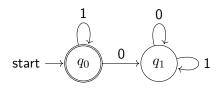
True

student John, Mary, Sue cheat John, Mary,Sue binary strings 111

Aristotelian Quantifiers are FSA-recognizable

Reminder: every

- every(A, B) holds iff $A \subseteq B$
- ▶ So every element of A must be mapped to 1.
- $L(every) = \{1\}^*$



False	
student cheat binary strings	John, Mary
T	
True	
student	John Mary Sue

111

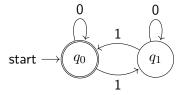
John, Mary, Sue

cheat

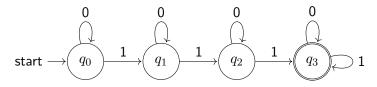
binary strings

Other FSA-recognizable quantifiers

Parity quantifiers: An even number



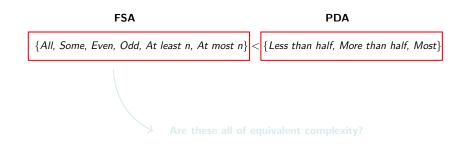
Cardinal quantifiers: At least 3

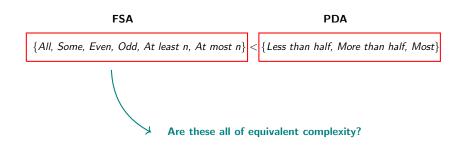


Proportional Quantifiers

- most(A, B) holds iff $|A \cap B| > |A B|$
- $L_{most} := \{ w \in \{0,1\}^* : |1|_w > |0|_w \}$
- There is no finite automaton recognizing this language.
- We need internal memory.

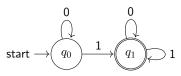
 \Rightarrow **push-down automata**: two states + a stack



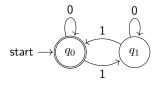


Let's Look at the Automata One More Time

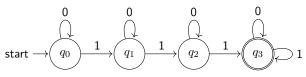
Aristotelian quantifiers: Some

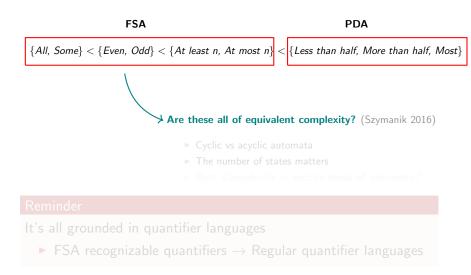


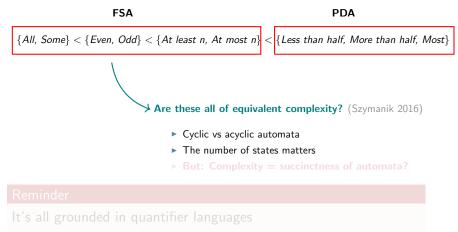
Parity quantifiers: An even number



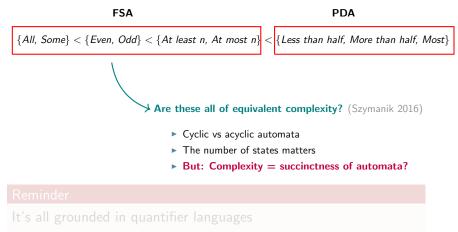
Cardinal quantifiers: At least 3



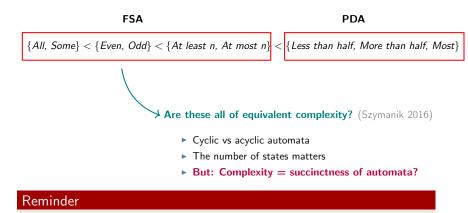




 $\blacktriangleright \mathsf{FSA} \mathsf{ recognizable quantifiers} \to \mathsf{Regular quantifier languages}$



 $\blacktriangleright \mathsf{FSA} \mathsf{ recognizable quantifiers} \to \mathsf{Regular quantifier languages}$

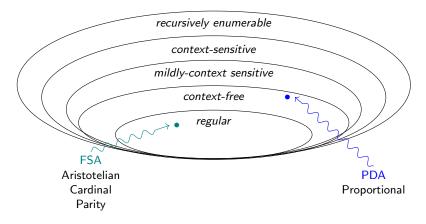


It's all grounded in quantifier languages

• FSA recognizable quantifiers \rightarrow Regular quantifier languages

Chomsky Hierarchy of String Languages (Reprise)

Languages (stringsets) can be classified according to the complexity of the **grammars** that generate them.



The Subregular Hierarchy

Often Forgotten:

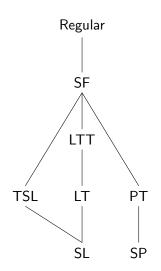
 hierarchy of subregular languages (McNaughton&Papert 1971), (Rogers et al. 2010)

A Richness of Results

- Phonology is subregular (Heinz&Idsardi 2013, Heinz 2015)
- Morphotactics (and Morphology?) is subregular

(Aksënova et al. 2016, Chandlee 2016, Aksënova&De Santo 2017)

▶ Syntax? (Graf&Heinz 2015)



The Subregular Hierarchy

Often Forgotten:

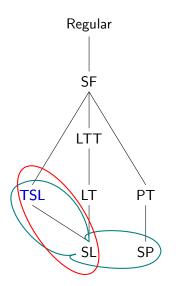
 hierarchy of subregular languages (McNaughton&Papert 1971), (Rogers et al. 2010)

A Richness of Results

- Phonology is subregular (Heinz&Idsardi 2013, Heinz 2015)
- Morphotactics (and Morphology?) is subregular

(Aksënova et al. 2016, Chandlee 2016, Aksënova&De Santo 2017)

Syntax? (Graf&Heinz 2015)



Strictly Local and Tier-based Strictly Local

Strictly Local (SL)

▶ SL_k grammars are lists of forbidden k-grams;

Tier-based Strictly Local (TSL)

- TSL is a minimal extension of SL, inspired by phonological tiers;
 - define a subset T of the string alphabet;
 - a grammar is a list of strictly k-local constraints over T

Subregular Quantifiers: Every is SL

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

• Eg. Every student cheated.

False

student John, Mary, Sue cheat John, Mary binary strings 110, 101, 011 grammar *0

True

student John, Mary, Sue cheat John, Mary, Sue binary strings 111 grammar *0

Subregular Quantifiers: Every is SL

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

$$\blacktriangleright L(every) = \{1\}^*$$

Eg. Every student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
× 1	1 0 ×	⋊ 1	1 1 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat John, Mary	cheat John, Mary, Sue
binary strings 110, 101, 011	binary strings 111
grammar $*0$	grammar *0
× 1 1 0 ×	× 1 1 1 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
× 1	1 0 ×	× 1	1 1 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
× 1	1 0 ×	× 1	1 1 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
F			
⇒ 1	1 0 ⊨	\rtimes 1	1 1 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
F			
⋊ 1	1 0 ×	\times 1	1 1 🛛

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
F			
× 1	1 0 ×	× 1	11 ×

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

•
$$L(every) = \{1\}^*$$

False		True	
	John, Mary, Sue		John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
F			
⋊ 1	1 0 ×	× 1	1 1 🛛

Reminder: Every

• every(A, B) holds iff $A \subseteq B$

$$\blacktriangleright L(every) = \{1\}^*$$

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat	John, Mary	cheat	John, Mary, Sue
binary strings	110, 101, 011	binary strings	111
grammar	*0	grammar	*0
F		т	
× 1	1 0 ×	× 1	1 1 ×

Reminder: some

- ▶ some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False student John, Mary, Sue cheat binary strings 000 grammar *0

rue

student	John, Mary, Sue
	John
binary strings	100,010,001

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	*0

True	
student	John, Mary, Sue
cheat	John
binary strings	100,010,001
grammar	*0

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student cheat	John, Mary, Sue	cheat	• • • • • • • • • • • • • • • • • • • •
binary strings grammar	000 *0	binary strings grammar	
⋈ 0	0 0 🛛	⋈ 0	0 1 🛛

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *0	grammar *0
	\rtimes 0 0 1 \ltimes

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar [*] 0	grammar [*] 0
× [0] 0 ×	\rtimes 0 0 1 \ltimes

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *0	grammar *0
× [0];[0] ×	\rtimes 0 0 1 \ltimes

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *0	grammar *0
F ⋊ [0][0][0] ⋈	× 0 0 1 ×

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *0	grammar *0
F ⋊ <u>[0][0][0]</u> ⊨	<pre>>> [0];[0];[1]; </pre>

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *0	grammar *0
F	F
⋊ <u>[0]</u> ;[0];[0]; ⋈	⋊ <u>[0][[0][1]</u> ; ⋈

Reminder: some

• some(A, B) holds iff $A \cap B \neq \emptyset$

•
$$L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$$

Eg. Some student cheated.

False	True
student John, Mary, Sue	student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *00	grammar *00
F × [0 0] 0 ×	

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Su	e student John, Mary, Sue
cheat	cheat John
binary strings 000	binary strings 100,010,001
grammar *000	grammar *000
F ⋊ <u>¦0_0_0</u> ⊨ ⋈	$\overset{\top}{}_{} _{}{} _{}{}$

John, Mary, Sue

100,010,001

??

John

 $\begin{bmatrix} 0 & 0^n & 1 \end{bmatrix} \ltimes$

Subregular Quantifiers: Some is SL?

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	True
student John, Mary, Sue	student
cheat	cheat
binary strings 000	binary strings
grammar ??	grammar
$\times [0 0^n 0] \ltimes$	× <u>0</u>

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

FalsestudentJohn, Mary, Suecheat000binary strings000grammar $T = \{1\}$ $S = \{* \rtimes \ltimes \}$

True

student Jo cheat Jo binary strings 10 grammar T

John, Mary, Sue John, 100, 010, 001 $T = \{1\}$ $S = \{* \rtimes \ltimes \}$

Reminder: some

- ▶ some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

FalsestudentJohn, Mary, Suecheat000binary strings000grammar $T = \{1\}$ $S = \{* \rtimes \ltimes\}$

True

studentJohn, MargcheatJohn,pinary strings100, 010, 0grammar $T = \{1\}$ $C = \{1\}$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$		$S = \{{}^* \rtimes \ltimes\}$
			1

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$		$S = \{^* \rtimes \ltimes \}$
⋈ 0	00 🛛	$\rtimes 0$	$1 0 \ltimes$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$		$S=\{^*\rtimes\ltimes\}$
\rtimes	\ltimes		
⋈ 0	0 0 🖂	$\rtimes 0$	$1 0 \ltimes$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$		$S=\{^*\!\rtimes\!\ltimes\}$
X	Ň		
×	×		
		0	1
⋈ 0	00×	$\times 0$	$1 0 \ltimes$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{ {}^* \rtimes \ltimes \}$		$S = \{{}^* \rtimes \ltimes\}$
\ltimes	×		
× 0	00 🛛	$\rtimes 0$	$1 0 \ltimes$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$		$S=\{^*\!\rtimes\!\ltimes\}$
×	K		
⋈ 0	0 0 ×	\rtimes 0	$1 0 \ltimes$

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	
	$S = \{^* \rtimes \ltimes \}$
$F \mid_{\bowtie}$	ĸ
× 0	00 ×

True	
student	John, Mary, Sue
cheat	John,
binary strings	100, 010, 001
grammar	$T = \{1\}$
	$S = \{ * \rtimes \ltimes \}$

Reminder: some

- some(**A**, **B**) holds iff $\mathbf{A} \cap \mathbf{B} \neq \emptyset$
- $L(some) = \{0,1\}^* 1 \{0,1\}^*$
- Eg. Some student cheated.

False		True	
student	John, Mary, Sue	student	John, Mary, Sue
cheat		cheat	John,
binary strings	000	binary strings	100, 010, 001
grammar	$T = \{1\}$	grammar	$T = \{1\}$
	$S=\{{}^*\!\rtimes\!\ltimes\}$		$S=\{{}^*\!\rtimes\!\ltimes\}$
F	K	⋈	×
⋈ 0	0 0 K	\rtimes 0	$1 0 \ltimes$

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	Tru
student John, Mary,	Sue
cheat	
binary strings 000	bi
grammar $T=\{1\}$	
$S = \{ {}^* \rtimes \ltimes \}$	
F \rtimes \ltimes	
\times 0 0 0 \ltimes	

studentJohn, Mary, SuecheatJohn,binary strings100, 010, 001grammar $T = \{1\}$ $S = \{* \rtimes \ltimes\}$

 $0 \ltimes$

 \rtimes 0

Reminder: some

- some(**A**, **B**) holds iff $\mathbf{A} \cap \mathbf{B} \neq \emptyset$
- $L(some) = \{0,1\}^* 1 \{0,1\}^*$
- Eg. Some student cheated.

False		True
student	John, Mary, Sue	S
cheat		
binary strings	000	binary
grammar	$T = \{1\}$	gr
	$S = \{ * \rtimes \ltimes \}$	
$F \mid_{\bowtie}$	\ltimes	
⋈ 0	0 0 🛛	

True	
student	John, Mary, Sue
cheat	John,
binary strings	100, 010, 001
grammar	$T = \{1\}$
	$S=\{{}^*\!\rtimes\!\ltimes\}$
	1
\rtimes	1 ⋉
$\rtimes 0$	$1 0 \ltimes$

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False		True
student	John, Mary, Sue	studer
cheat		chea
binary strings	000	binary string
grammar	$T = \{1\}$	gramma
	$S = \{^* \rtimes \ltimes \}$	
$F \mid_{\bowtie}$	×	×
⋈ 0	00 🛛	\rtimes

ie	
student	John, Mary, Sue
cheat	John,
nary strings	100, 010, 001
grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$
	4
\bowtie	1 ⋉

 \ltimes

0

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$
$F \mid_{\bowtie}$	
	\ltimes
⋈ 0	0 0 🛛

True student John, Mary, Sue cheat John, binary strings 100, 010, 001 grammar $T = \{1\}$ $S = \{* \rtimes \ltimes\}$ $| \varkappa = 1 | \ltimes$ $\rtimes = 0, 1, 0, \ltimes$

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	
	$S = \{^* \rtimes \ltimes \}$
R [
$F \mid_{\Join}$	~
⋈ 0	0 0 🛛

True student John, Mary, Sue cheat John. binary strings 100, 010, 001 grammar $T = \{1\}$ $S = \{^* \rtimes \ltimes \}$ \times 1 K I Χ - 0 0 K

Subregular Quantifiers: Some is TSL

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	$T = \{1\}$
	$S = \{^* \rtimes \ltimes \}$
$F \mid_{\bowtie}$	
	\ltimes
⋈ 0	0 0 🛛

True student John, Mary, Sue cheat John, binary strings 100, 010, 001 grammar $T = \{1\}$ $S = \{* \rtimes \ltimes\}$ $T \downarrow \Join \downarrow 1 \downarrow \vdash \ltimes \}$ $\rtimes 0 \ 1 \ 0 \ltimes$

Subregular Quantifiers: Some is TSL

Reminder: some

- some(A, B) holds iff $A \cap B \neq \emptyset$
- $L(\text{some}) = \{0,1\}^* \, 1 \, \{0,1\}^*$
- Eg. Some student cheated.

False	
student	John, Mary, Sue
cheat	
binary strings	000
grammar	$T = \{1\}$
	$S=\{^*\!\rtimes\!\ltimes\}$
$F \mid_{\bowtie}$	\ltimes
⋈ 0	0^n 0 \ltimes

Т	rue	

bi

student	John, Mary, Sue	
cheat	John,	
nary strings	100, 010, 001	
grammar	$T = \{1\}$	
	$S = \{{}^* \rtimes \ltimes \}$	
$\rtimes 0^n$	$1 \ 0^n \ltimes$	

An even number

▶ An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0▶ $L(even) = \{w \in 0, 1^*s.t. |1|_w \ge 2n$, with $n > 0\}$

Is L(even) a TSL language?

F11100 T11110 F11111

An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$

Is L(even) a TSL language?

F11100 T11110 F11111

An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$

Is L(even) a TSL language?

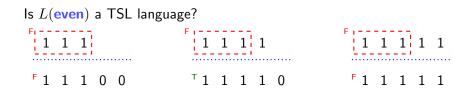
F11100 T11110 F11111

An even number

- ► An even number(**A**, **B**) holds iff $|\mathbf{A} \cap \mathbf{B}| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$

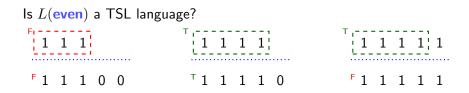
An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$



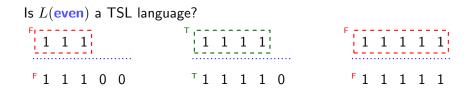
An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$



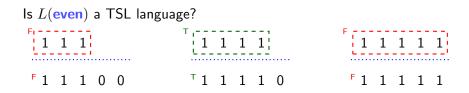
An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- $L(even) = \{ w \in 0, 1^* s.t. | 1|_w \ge 2n, \text{ with } n > 0 \}$



An even number

- ► An even number(A, B) holds iff $|A \cap B| \ge 2n$, with n > 0
- ▶ $L(even) = \{w \in 0, 1^*s.t. | 1|_w \ge 2n, \text{ with } n > 0\}$



Since *n* is arbitrary, there is **no general TSL grammar** that can generate L(even).

Characterization of Quantifier Languages: Summary

Language	Constraint	Complexity	Subregular Grammar
every	$ 0 _{w} = 0$	SL-1	$\mathbf{S} := \{\neg 0\}$
no	$ 1 _{w} = 0$	SL-1	$\mathbf{S} := \{ \neg 1 \}$
some	$ 1 _w \ge 1$	TSL-2	$T \mathrel{\mathop:}= \{1\}$, $S \mathrel{\mathop:}= \{\neg \rtimes \ltimes\}$
not all	$ 0 _w \ge 1$	TSL-2	$T \mathrel{\mathop:}= \{0\}, \ S \mathrel{\mathop:}= \{\neg \rtimes \ltimes\}$
(at least) n	$ 1 _w \ge n$	TSL-(n+1)	$T := \{1\}$, $S := \left\{ \neg \rtimes 1^k \ltimes ight\}_{k \leq n}$
(at most) n	$ 1 _w \le n$	TSL-(n+1)	$T := \{1\}, S := \{\neg 1^{k+1}\}$
all but n	$ 0 _w = n$	TSL-(n+1)	$ \begin{split} \mathbf{T} &:= \{1\}, \mathbf{S} := \left\{\neg 1^{k+1}\right\} \\ \mathbf{T} &:= \{0\}, \mathbf{S} := \left\{\neg 0^{n+1}, \neg \rtimes 0^k \ltimes\right\}_{k \le n} \end{split} $
even number	$ 1 _w = 2n, n \ge 0$	regular	impossible
most	$ 1 _w \ge 0 _w$	context-free	impossible

A Complexity Hierarchy (Revisited)

Semantic Automata predictions

FSA

PDA

 $\{AII, Some\} < \{Even, Odd\} < \{At least n, At most n\} < \{Less than half, More than half, Most\}$

Subregular characterization predictions

A Complexity Hierarchy (Revisited)

Semantic Automata predictions

FSA

PDA

 $\{AII, Some\} < \{Even, Odd\} < \{At least n, At most n\} < \{Less than half, More than half, Most\}$

Subregular characterization predictions

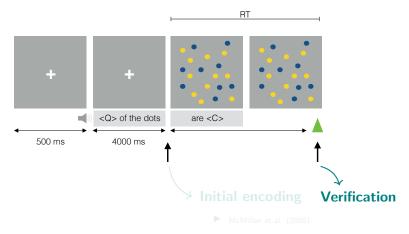
Automata vs Quantifier Languages

- cardinal < parity;</p>
- complexity independent of the specific recognition machine
- what's the cognitive reality of these predictions?

Formal Complexity and Cognition

- FO-quantifiers vs higher order quantifiers
 - neuroimaging (McMillan et al. 2005, Clark & Grossman 2007)
 - patient literature (McMillan et al. 2009, Troiani et al 2009,)
- Psycholinguistic evidence for semantic automata
 - many behavioral findings (Szymanik & Zajenkowsky 2009, 2010, Steinert-Threlkeld & Icard 2013, i.a.)
 - for a survey: Szymanik (2016)
- Subregular hierarchy and cognition
 - general discussion(Rogers et al. 2013)
 - animal vs human cognition (Pulum & Rogers 2006, Rogers & Pullum 2011)
 - learnability and acquisition (Lai 2015, Avcu 2017)

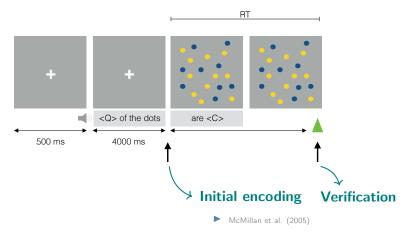
Testing the Subregular Predictions



Disentangling encoding from verification

- ► ERP → upcoming (De Santo et al, SNL2017), MEG, ...
- ▶ Pupil size ← **ongoing**...

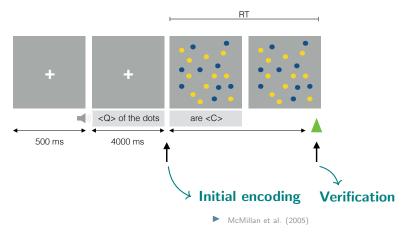
Testing the Subregular Predictions



Disentangling encoding from verification

- ► ERP → upcoming (De Santo et al, SNL2017), MEG, ...
- ▶ Pupil size ← **ongoing**...

Testing the Subregular Predictions



Disentangling encoding from verification

- ▶ ERP \rightarrow upcoming (De Santo et al, SNL2017), MEG, ...

Conclusions

Tracing Back our Steps

- SA as a plausible model of quantifier complexity
- Refined by looking at weaker classes in the Chomsky hierarchy
 subregular characterization of generalized quantifiers

Outcomes & Future Work

- Computational complexity and cognition
 - precise, testable predictions about cognitive resources
 - strong, cross-domain linking hypothesis
- Support for cross-domain subregular generalizations
 - typological predictions (Graf 2017)
 - insights on learnability/acquisition
- New theoretical questions
 - e.g. permutation closure & subregular languages?

Conclusions

Tracing Back our Steps

- SA as a plausible model of quantifier complexity
- Refined by looking at weaker classes in the Chomsky hierarchy
 subregular characterization of generalized quantifiers

Outcomes & Future Work

- Computational complexity and cognition
 - precise, testable predictions about cognitive resources
 - strong, cross-domain linking hypothesis
- Support for cross-domain subregular generalizations
 - typological predictions (Graf 2017)
 - insights on learnability/acquisition
- New theoretical questions
 - e.g. permutation closure & subregular languages?

An algorithm is likely to be understood more readily by understanding **the nature of the problem** being solved than by examining the mechanism (and the hardware) in which it is embodied.

(Marr 1983, p.27)

Selected References I

- Aksënova, Alëna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as tier-based strictly local dependencies. In Proceedings of SIGMorPhon 2016.
- 2 Aksënova, Alëna and Aniello De Santo. 2017. Strict Locality in morphological derivations. (to appear)In Proceedings of CLS53 2017.
- 3 Avcu Enes. 2017. Experimental investigation of the subregular hierarchy. In Proceedings of PLC41, 2017.
- 4 van Benthem, Johan. 1986. Semantic automata. In Essays in logical semantics, 151?176. Dordrecht: Springer.
- 5 Chandlee, Jane. 2016. Computational locality in morphological maps. Ms., Haverford College.
- 6 Graf, Thomas. 2017. The subregular complexity of monomorphemic quantifiers. Ms., Stony Brook University.
- 7 Graf, Thomas and Heinz, Jeffrey. 2016. Tier-based strictly locality in phonology and syntax. Ms., Stony Brook University and University of Delaware.
- 8 Heinz, Jeffrey. 2015. The Computational Nature of Phonological Generalizations. Ms., University of Delaware.
- 9 Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In Proceedings of ACL 49th, 58–64.
- Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. Computational Linguistics 20:3317378.
- Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology with composition. In COLING'92, 141-148.
- Just, M. A., P. A. Carpenter, and A. Miyake. 2003. Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential.
- 13 Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic Inquiry 46:425?451.

Selected References II

- Marr, David (1983). Vision: A Computational Investigation into the Human Representation and Processing Visual Information. San Francisco: W. H. Freeman.
- McMillan Corey T., Robin Clark, Peachie Moore, Christian Devita, and Murray Grossman. 2005. Neural basis for generalized quantifier comprehension. Neuropsychologia, 43(12):1729?1737, Jan2005.
- 16 McNaughton, Robert, and Seymour Papert. 1971. Counter-free automata. Cambridge, MA: MIT Press.
- Mostowski, M. 1998. Computational semantics for monadic quantifiers. Journal of Applied Non-Classical Logics, 8, 107–121.
- 10 Pullum, Geoffrey K., and James Rogers. 2006. Animal pattern-learning experiments: Some mathematical background. Ms., Radcliffe Institute for Advanced Study, Harvard University.
- Rogers, J., J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel (2013). Cognitive and Subregular Complexity, Chapter Formal Grammar, pp. 90?108. Springer.
- Rogers, James and Geoffrey Pullum. 2007. Aural Pattern Recognition Experiments and the Subregular Hierarchy. In Proc. of Mathematics of Language 10, 1–16.
- 21 Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Linguistics and Philosophy. 8:333–345.
- Steinert-Threlkeld Shane and Thomas F. Icard III. 2013. Iterating Semantic Automata. Linguistics and Philosophy, 2013.
- Szymanik Jakub and Marcin Zajenkowski. 2010. Comprehension of simple quantifiers: empirical evaluation of a computational model. Cognitive Science, 34(3):521–532, April 2010.
- Szymanik Jakub and Marcin Zajenkowski. 2011. Contribution of working memory in parity and proportional judgments. Belgian Journal of Linguistics, 25(1):176–194, January 2011.
- 25 Szymanik, Jacub. 2016. Quantifiers and Cognition: Logical and Computational Perspectives. Springer International Publishing.
- 26 Troiani, V., Peelle, J., Clark, R., and Grossman, M. 2009. Is it logical to count on quantifiers?

Dissociable neural networks underlying numerical and logical quantifiers. Neuropsychologia, 47, 104-111.

Appendix

Logical Definability of Subregular Classes

	Regular	Monadic Second-Order Logic
	U	
$\begin{array}{c} Locally \\ Threshold \ Testable \end{array} \subset$	Star Free	First-Order Logic
U	U	
Locally	Piecewise	Propositional
Testable	Testable	Logic
U	\cup	
Strictly 💪 TSL	Strictly	Conjunction of
Local	Piecewise	Negative Literals
S/ \triangleleft	$$	

Word-Final Devoicing is SL

- SL grammars are lists of forbidden n-grams;
- Word-Final Devoicing: voiced segments at the end of a word are forbidden.

Word-Final Devoicing: German Example

• Grammar
$$S := \{ *z \ltimes, *v \ltimes, *d \ltimes \}$$

$$* \times r a d \ltimes$$

Word-Final Devoicing is SL

- SL grammars are lists of forbidden n-grams;
- Word-Final Devoicing: voiced segments at the end of a word are forbidden.

Word-Final Devoicing: German Example

• Grammar
$$S := \{ *z \ltimes, *v \ltimes, *d \ltimes \}$$

Word-Final Devoicing is SL

- SL grammars are lists of forbidden n-grams;
- Word-Final Devoicing: voiced segments at the end of a word are forbidden.

Word-Final Devoicing: German Example

• Grammar
$$S := \{ *z \ltimes, *v \ltimes, *d \ltimes \}$$

Word-Final Devoicing is SL

- SL grammars are lists of forbidden n-grams;
- Word-Final Devoicing: voiced segments at the end of a word are forbidden.

Word-Final Devoicing: German Example

• Grammar
$$S := \{ *z \ltimes, *v \ltimes, *d \ltimes \}$$

*
$$\times$$
 rad \times

Tier-based Strictly Local (Heinz et al. 2011)

- TSL is a minimal expansion of SL
- Inspired by phonological tiers

TSL Grammars

- ▶ a projection function $E: \Sigma \to T \cup \lambda$, with $T \subseteq \Sigma$
- strictly local constraints over T

If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

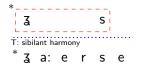
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

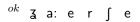
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

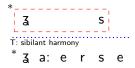
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

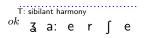
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



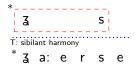


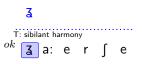
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



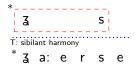


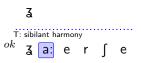
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



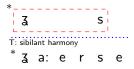


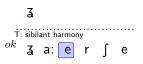
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



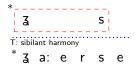


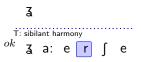
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



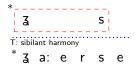


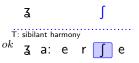
If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.



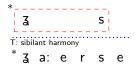


If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.





If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.





If multiple sibilants {s, z, ʒ, ∫} occur in the same word, they must all be voiceless {s, ∫} or voiced {z, ʒ}.

