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Consequences

» complexity independent of the recognition mechanism

» cross-domain parallels, cognitive predictions and new
experimental paradigms!
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Generalized Quantifiers

Generalized quantifier Q(A, B):
> two sets A and B as arguments

> returns truth value (0, 1)

(1) Every student cheated.

» every(A,B)=1iff ACB

» student: John, Mary, Sue

» cheat: John, Mary

» student € cheat = every(student, cheat) =0

» "“Every student cheated” is false.
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Binary Strings

> The language of A is the set of all permutations of A.

student John, Mary, Sue
L(student) John Mary Sue, John Sue Mary
Mary John Sue, Mary Sue John
Sue John Mary, Sue Mary John

> Now replace every a € A by a truth value:
1 ifaeB
0 ifa¢B
» The result is the binary string language of A under B.

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011
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Quantifier Languages (van Benthem 1986)

» We can associate each quantifier Q with a language in {0,1}*
= Q accepts only binary strings of specific shape
» This is its quantifier language.

Example: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}"

Example: some

» some(A, B) holds iff AN B # ()
> Some element of A must be mapped to 1.
» L(some) = {0,1}*1{0,1}"
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Chomsky Hierarchy of String Languages

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.
recursively enumerable

context-sensitive

mildly-context sensitive

context-free

Phonology Syntax

Kaplan and Kay (1994) Shieber (1985)
Morphology

Karttunen et al. (1992)



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive
mildly-context sensitive
context-free

regular



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive
mildly-context sensitive
context-free

regular

Finite-State Automaton



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

recursively enumerable

context-sensitive
mildly-context sensitive
context-free

regular

Push-Down Automaton

Finite-State Automaton



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

Linear-bounded Automaton

recursively enumerable

context-sensitive
mildly-context sensitive

context-free

regular

///

Finite-State Automaton

Push-Down Automaton



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

Turing Machine

Linear-bounded Automaton

recursively enumerable

context-sensitive
mildly-context sensitive

context-free

regular

///

Finite-State Automaton

Push-Down Automaton



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Chomsky Hierarchy and Automata Theory

Turing Machine

Linear-bounded Automaton

recursively enumerable

context-sensitive
mildly-context sensitive

context-free

regular

///

Finite-State Automaton

Semantic Automata

We can rank quantifiers based on their quantifier languages and the complexity
of the machine needed to recognize them.

Push-Down Automaton
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» L(every) = {1}"
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Aristotelian Quantifiers are FSA-recognizable

Reminder: every

» every(A,B) holds iff AC B
» So every element of A must be mapped to 1.
» L(every) = {1}"

False

student John, Mary, Sue
cheat John, Mary
binary strings 110, 101, 011

start—> 0 e i True
student John, Mary, Sue

cheat John, Mary,Sue
binary strings 111
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Conclusions

Other FSA-recognizable quantifiers

» Parity quantifiers: An even number

0 0
1

start —> e
1

» Cardinal quantifiers: At least 3
0

0 0
start —{ 9o 1%1%1@ 1




Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Proportional Quantifiers

» most(A, B) holds iff AN B| > |A — B

» Limost := {w € {0,1}* : |1|, > |0w}

» There is no finite automaton recognizing this language.
» We need internal memory.

= push-down automata: two states + a stack
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A Hierarchy of Quantifiers’ Complexity

FSA

PDA

{All, Some, Even, Odd, At least n, At most n}

<

{Less than half, More than half, Most}

10
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Let's Look at the Automata One More Time

» Aristotelian quantifiers: Some
0 0

1
start —> 1

» Parity quantifiers: An even number
0 0
1

start —> e
1

» Cardinal quantifiers: At least 3
0

0
A
start —( 4o q1 q2 > g3 1

11
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A Hierarchy of Quantifiers’ Complexity

FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

Are these all of equivalent complexity? (Szymanik 2016)

» Cyclic vs acyclic automata
» The number of states matters

» But: Complexity = succinctness of automata?

Reminder

It's all grounded in quantifier languages

» FSA recognizable quantifiers — Regular quantifier languages

12



Psycholinguistic Predictions Conclusions

Semantic Automata Subregular Characterization

Chomsky Hierarchy of String Languages (Reprise)

Languages (stringsets) can be classified according to the
complexity of the grammars that generate them.

recursively enumerable

context-sensitive

mildly-context sensitive

context-free

regular

Aristotelian PDA
Cardinal Proportional
Parity

13
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Psycholinguistic Predictions

Conclusions

The Subregular Hierarchy

Often Forgotten:
> hierarchy of subregular languages
(McNaughton&Papert 1971), (Rogers et
al. 2010)

Regular

LTT

TSL LT PT

SL SP

14
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The Subregular Hierarchy

Often Forgotten: Regular

> hierarchy of subregular languages
(McNaughton&Papert 1971), (Rogers et
al. 2010)

A Richness of Results

» Phonology is subregular
(Heinz&Idsardi 2013, Heinz 2015)

» Morphotactics (and Morphology?) is
subregular
(Aksénova et al. 2016, Chandlee 2016,
Aksénova&De Santo 2017)

» Syntax? (Graf&Heinz 2015)

14
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Strictly Local and Tier-based Strictly Local

Strictly Local (SL)

» SL; grammars are lists of forbidden k-grams;

Tier-based Strictly Local (TSL)

» TSL is a minimal extension of SL, inspired by phonological
tiers;
» define a subset T of the string alphabet;
» a grammar is a list of strictly k-local constraints over T

15
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Subregular Quantifiers: Every is SL

Reminder: Every

» every(A,B) holds iff AC B
» L(every) = {1}"
» Eg. Every student cheated.

student
cheat

binary strings
grammar
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110, 101, 011 binary strings 111
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Parity Quantifiers?

An even number

» An even number(A, B) holds iff |A N B| > 2n, with n > 0
» L(even) = {w € 0,1*s.t.|1|,, > 2n, with n > 0}

Is L(even) a TSL language?

F11100 11110 F1 1111

Since n is arbitrary, there is no general TSL grammar that can
generate L(even).
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Conclusions

Characterization of Quantifier Languages: Summary

Language
every

no

some

not all

(at least) n
(at most) n
all but n
even number
most

Constraint Complexity
0], =0 SL-1

|1|w =0 SL-1

[y >1 TSL-2

0]y > 1 TSL-2

1w >7n TSL-(n+1)
Il <n TSL-(n +1)
0]y =n TSL-(n +1)
1]y =2n, n >0 regular

1] > [0]w context-free

Subregular Grammar

impossible
impossible
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A Complexity Hierarchy (Revisited)

» Semantic Automata predictions
FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}
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» Semantic Automata predictions
FSA PDA

{All, Some} < {Even, Odd} < {At least n, At most n}| <|{Less than half, More than half, Most}

» Subregular characterization predictions
SL TSL REG CF

{All}{ < {Some, At least n, At most n}|<|{Even, Odd}| <|{Less than half, More than half, Most}

Automata vs Quantifier Languages

» cardinal < parity;

» complexity independent of the specific recognition machine

» what’s the cognitive reality of these predictions?
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Formal Complexity and Cognition

» FO-quantifiers vs higher order quantifiers

» neuroimaging (McMillan et al. 2005, Clark & Grossman 2007)
» patient literature (McMillan et al. 2009, Troiani et al 2009,)

» Psycholinguistic evidence for semantic automata

» many behavioral findings (Szymanik & Zajenkowsky 2009,
2010, Steinert-Threlkeld & Icard 2013, i.a.)
» for a survey: Szymanik (2016)

» Subregular hierarchy and cognition
» general discussion(Rogers et al. 2013)

» animal vs human cognition (Pulum & Rogers 2006, Rogers &
Pullum 2011)

» learnability and acquisition (Lai 2015, Avcu 2017)

Conclusions
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Psycholinguistic Predictions

Testing the Subregular Predictions

<Q> of the dots are <C>
4+ +———> < >
500 ms 4000 ms T

T
Y

Verification
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Psycholinguistic Predictions

Testing the Subregular Predictions

<Q> of the dots are <C>

500 ms 4000 ms T T

\) Initial encoding Verification

P McMillan et al. (2005)

Disentangling encoding from verification

» ERP — upcoming (De Santo et al, SNL2017), MEG, ...
> Pupil size < ongoing...
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Conclusions

Tracing Back our Steps
» SA as a plausible model of quantifier complexity

> Refined by looking at weaker classes in the Chomsky hierarchy
= subregular characterization of generalized quantifiers

24



Semantic Automata Subregular Characterization Psycholinguistic Predictions Conclusions

Conclusions

Tracing Back our Steps
» SA as a plausible model of quantifier complexity

> Refined by looking at weaker classes in the Chomsky hierarchy
= subregular characterization of generalized quantifiers

Outcomes & Future Work

» Computational complexity and cognition

> precise, testable predictions about cognitive resources
» strong, cross-domain linking hypothesis

» Support for cross-domain subregular generalizations

» typological predictions (Graf 2017)
> insights on learnability /acquisition

» New theoretical questions
» e.g. permutation closure & subregular languages?
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An algorithm is likely to be understood more readily by
understanding the nature of the problem being solved

than by examining the mechanism (and the hardware) in
which it is embodied.

(Marr 1983, p.27)
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Logical Definability of Subregular Classes

Regular Monadic
g€ Second-Order Logic
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» Word-Final Devoicing: voiced segments at the end of a word
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Tier-based Strictly Local (Heinz et al. 2011)

» TSL is a minimal expansion of SL

> Inspired by phonological tiers

TSL Grammars

> a projection function £ : ¥ — T UM\, with T C 3

» strictly local constraints over T
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TSL Example: Sibilant harmony in A ARI
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