
Knowledge-Based Systems 229 (2021) 107345

a

b

f
a
e
t
o
o
p
t

u
o
b
t
v
o
c
h
s
e
d

a
g

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A deep learning approach for semi-supervised community detection in
Online Social Networks
Aniello De Santo a, Antonio Galli b, Vincenzo Moscato b, Giancarlo Sperlì b,∗
Department of Linguistics of the University of Utah, Salt Lake City, UT 84112, USA
Department of Electrical Engineering and Information Technology (DIETI), University of Naples ‘‘Federico II’’, Via Claudio 21, Naples, Italy

a r t i c l e i n f o

Article history:
Received 6 April 2021
Received in revised form 11 June 2021
Accepted 24 July 2021
Available online 28 July 2021

Keywords:
Social Network Analysis
Semi-supervised community detection
Online Social Networks
Deep learning

a b s t r a c t

Social Network Analysis (SNA) has gained popularity as a way to unveil and identify useful social
patterns as communities among users. However the continuous, exponential growth of these networks
(both in terms of number of users, and in terms of the variety of different interactions that these
networks allow) has made the development of efficient and effective community detection techniques
a challenging computational task. In this paper, we propose an innovative approach for Semi-supervised
Community Detection, exploiting Convolutional Neural Networks to simultaneously leverage different
properties of a network — such as topological and context information. Crucially, computational cost
is optimized by building on the insight that representing network connections over particular sparse
matrices can significantly decrease the number of operations that need to be explicitly performed.
By extensively evaluating our system on large (artificial and real-world) datasets, we show that our
approach outperforms a variety of existing state-of-the-art techniques in terms of running time, as
well as over Macro− and Micro− F1.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

On-line Social Networks (OSNs) are nowadays a central hub
or human interaction and information sharing, their popularity
nd variety having grown more and more in the last decade. The
xponential increase in the amount of people interacting over
hese platforms has obviously lead to a change in the patterns
f usage registered across OSNs, as well as the type and amount
f information generated from them. For instance, Facebook re-
orted 1,8 billions of active daily users producing hundreds of
housands of comments and posts every 60 seconds [1].

Because of the complex interaction between large amount of
sers and the heterogeneous information they produce, OSNs are
f interest not only to different kinds of companies — attracted
y the possibility of increasing profit through targeted, real-
ime and well-timed user-oriented actions [2,3] — but also to a
ariety of researchers inspired by the technological challenges
ffered by the study of users’ social behavior within large online
ommunities [4]. In particular, Social Network Analysis (SNA) can
elp develop methodologies to effectively explore the different
ocial ‘‘ties’’ among users within such environments for a vari-
ty of applications: viral marketing, expert finding, community
etection, influence analysis, social recommendation, and so on.

∗ Corresponding author.
E-mail addresses: aniello.desanto@utah.edu (A. De Santo),

ntonio.galli@unina.it (A. Galli), vincenzo.moscato@unina.it (V. Moscato),
iancarlo.sperli@unina.it (G. Sperlì).
ttps://doi.org/10.1016/j.knosys.2021.107345
950-7051/© 2021 Elsevier B.V. All rights reserved.
In this sense, modern OSNs seem to be characterized by the
tendency of individuals to associate and bond with others who
share similar interests (i.e. homophily), as in the proverb ‘‘birds of
a feather flock together’’. In turn, this leads to the spontaneous
formation of smaller user communities within larger OSNs with
varying degrees of internal cohesiveness.

Accurate community detection is relevant to a variety of SNA
applications [4–6]. For instance, discovering hubs and leaders
(‘‘influencers’’), or experts for a given subject is an easier task
when the search takes place over a well-structured community of
users with similar interests. Uncovering networks of users clus-
tering with respect to specific topics can also help maximize the
spread of new technologies [7,8]. Similarly, recommendation sys-
tems can be made more reliable when considering how social ties
influence users’ choices and behavior within a community [9,10].
Recognizing outlier users inside a specific community can also
significantly contribute to the detection of undesirable behavior
(from spam bots to hate speech).

More generally, community detection techniques over large
user groups can be generalized easily to any complex system that
can be conceptualized as a network. In this sense, modern indus-
trial systems are often modeled as complex networks, with flows
of information affecting reliability and operational performance.
Thus, companies organized around complex internal structures
generating significant amount of data could leverage community
detection techniques to improve productivity, balance costs and

https://doi.org/10.1016/j.knosys.2021.107345
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107345&domain=pdf
mailto:aniello.desanto@utah.edu
mailto:antonio.galli@unina.it
mailto:vincenzo.moscato@unina.it
mailto:giancarlo.sperli@unina.it
https://doi.org/10.1016/j.knosys.2021.107345

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

b
n

t
m
i
o
s
c
q
c
a
w
i
i

c
T
o
c
e
i

p
c

l
i
r
e
w
s
a
v
C
e
d
b
o
t

i
m
c
o
e
g
s
r
p
i
W
m

e
d
m

t

enefits, predict performance degradation, and optimize service
eeds.
While effectively unveiling users’ communities on the base of

heir interests and social connections seems then to be one of the
ost important goals (and challenges) for state-of-the-art SNA, it

s hard to find in the literature a universally accepted definition
f community [11–13]. At its core though, the term community
urely has to deal with social context: people naturally tend to
reate groups within a social environment. Importantly, a re-
uired property of a community is cohesiveness: users of the same
ommunity are strongly connected to each other. The simplest
pproach is then define an OSN community as a group of users
ho share interests, by generating/sharing similar content or

nteracting with each other more frequently than with other users
n the network.

A variety of techniques have been proposed to deal with the
ommunity detection problem — leveraging, among others, Game
heory [14], network topological features [15], and greedy meth-
ds [16]. Crucially, while the majority of existing approaches for
ommunity detection exploit network topology and structure, the
ssential role played by other background or context information
n defining such communities has often been ignored.

Prior information about users’ behavior and interactions can
rovide fundamental insights into the structure of real-word OSN
ommunities. Semi-supervised community detection techniques fo-
cus on the best way to use prior information to support the
discovery process of community structure. In these approaches,
there are nodes for which the true community assignment is
known in advance — the problem then is how to find the correct
communities for unlabeled nodes within a social graph according
to a label propagation process.

Early attempts to address this problem have relied on the
use of matrix factorization techniques [17,18]. While these tech-
niques seem to successfully capture core information about the
network, the significant cost of working over high dimensional
matrices makes them not suitable for real applications over mod-
ern OSNs. Because of this, the most popular approaches to semi-
supervised community detection in the last couple of years have
been relying on network embeddings [19,20] — in order to learn
low-dimensional representations for nodes in a network — and
convolutional neural networks (CNNs), extending the more gen-
eral problem of semi-supervised classification to graph nodes of
a social network [21].

In sum, given the ever-growing status of OSNs networks, one
of the major challenges of community detection is how to effi-
ciently keep track of both global information about the network
of interactions, and local information about (sub-communities of)
users.

With this in mind, this paper presents a semi-supervised com-
munity detection approach, combining deep learning techniques
with topological properties of a social network. Specifically, our
approach exploits Convolutional Neural Networks, in order to
everage prior information about the network. As mentioned, user
nteractions within different OSNs can be straightforwardly rep-
esented as sparse, high dimensional adjacency matrices. How-
ver, the dimensionality of modern OSNs is an issue for CNNs,
hich are traditionally used to classify images with significantly
maller input matrices. In order to deal with the dimensionality
nd sparsity issues, and efficiently perform a convolution on a
ery large sparse matrix, we opportunely modify the standard
NN’s input layer by introducing the SparseConv2D operator. The
fficacy and effectiveness of the approach is then evaluated using
ata from artificial simulated and real-world networks. To the
est of our knowledge, we are the first to adapt current CNNs
ver very sparse matrices, thus fruitfully extending well-studied

echniques to the community detection problem.

2

The rest of the paper is organized as follows. Section 2 reviews
recent, popular approaches to community detection, with par-
ticular focus on deep learning based methods. Section 3 details
this paper’s approach to the semi-supervised community detec-
tion problem, and explores the issue of high dimensionality and
sparsity of adjacency matrices. Section 4 presents the functional
architecture of the system, with several implementation details.
Finally, Sections 5 and 6 discuss the experimental results and the
broader impact of our methodology.

2. Related work

As mentioned above, although community detection has be-
come a core application of SNA, the term ‘‘community’’ still
lacks a single, unique definition. For instance, while from a topo-
logical point of view a community can be seen as a subset of
nodes densely connected with respect to others over a social
graph [13,22–24], other work has pointed out the relevance of
semantic features, defining a community as a subset of nodes
sharing common properties and/or playing similar roles within
the social graph [25]. Crucially, while these two perspectives are
not incompatible, the task of merging the best of the two is far
from trivial from a computational perspective — for instance, the
full enumeration of community substructures within a network
is an NP-Complete problem [26].

So far, community analysis [27] has been generally based on
two fundamental steps: (i) detection of meaningful communities
within a network; and (ii) evaluation of identified subgroups with
measures that depend on the chosen concept of community.

There are several state-of-the-art methodologies addressing
the identification problem from a topological perspective. For
instance, SCAN [28] — which aims to identify sub-graphs sat-
sfying specific conditions for what can be considered a com-
unity — or FastGreedy [29] which defines the vertices of a
ommunity as a graph through the optimization of particular ge-
metric measures (i.e. normalized cut, conductance, modularity,
tc.). Building on these ideas, other approaches combine both
lobal and local topological information using label propagation
trategies [30,31]. Another class of community detection algo-
ithms relies on matrix factorization methods. Liu et al. [32] pro-
ose a semi-supervised approach that combines graph regular-
zation with pairwise constraints on the basis of node popularity.
u et al. [33] adopt instead a non-negative matrix factorization
ethod, using hypergraph regularization.
Importantly, these approaches rely on knowledge about the

ntire network matrix, making them more suitable for small
atasets — an issue partially addressed by leveraging statistical
odels to split a network into local communities [34].
A different way of exploiting topological features has been

o look at community detection as a Team Foundation prob-
lem, combining knowledge about the structure of the network
with semantic information about established connections be-
tween nodes. For instance, focusing on scientific collaboration
networks, Mercorio et al. [35] propose an algorithm based on
Node Location Analysis over a unified model combining schol-
arly document metadata with semantic information. Similarly,
Najaflou et al. [36] show the value of domain specific knowledge
by introducing Chemistry and Expertise Level metrics, that re-
spectively measure the communication scale required by a task
and the overall expertise among potential teams.

As in many other areas of information technology, the quick
rise of deep learning methods in the last few years has also spread
to community detection in OSNs. For example, Lin and Coen [37]
propose a learning method for deep neural networks based on
random graph walk, by using authoritative instances as training
seeds to reduce the amount of required labeled data. In [38], the

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

a
c
c
a
c

w
c
t
i
b
G
o
n
i
(
d
p
a
w
t

D
l
f
r
p
r
a
e
e
t
o
p
Z
b
t
a
i
f
t
I
G
g
b
i
p
s

l
r
s
C
i

a
t
e
o
s
t
i
m
a
t
c
c

uthors analyze inter-community interactions in order to evaluate
onflicts among communities, mitigating the negative impact of
onflictual interactions and predicting possible conflicts by using
Long short-term memory (LSTM) model that combines user,

ommunity, and text features.
Semi-supervised approaches have been shown to be a good

ay to integrate network topology with prior information for
ommunity detection [39], and deal with dimensionality issues. In
his sense, Yang et al. [40] propose a method based on a modular-
ty function and a low-dimensional embedding matrix computed
y using an auto-encoder schema. Bruna et al. [41] propose a
raph Neural Network (GNN) model with the non-Backtracking
perator defined on the line graph of edge adjacency. Alter-
atively, some work has instead focused on graph embeddings
n order to map a graph into a low-level dimensional space
see [42] for details). Wang et al. [43] present a semi-supervised
eep model — Structural Deep Network Embedding (SDNE) — to
reserve both local and global information about the structure of
network by jointly optimizing first and second order proximity
hile at the same time making the method robust with respect
o sparse networks.

Moving away from supervised methods, Perozzi et al. [19]’s
eepWalk allow for latent representations of social graph re-
ations using a random walk generator, coupled with SkipGram
or sampling random vertices and updating the representation,
espectively. Extending DeepWalk with a controlled path sam-
ling process, Node2Vec [20] improves the learning of latent
epresentations with a likelihood maximization function aimed
t preserving network neighborhoods of nodes. Relatedly, Tang
t al. [44] propose LINE, a network embedding method, leveraging
dge-sampling to deal with stochastic gradient descent limita-
ions, and preserve both local and global graph structure. Among
ther network embedding approaches, Wang et al. [45] use meta-
ath based neighbors encoding hierarchical information, while
hu et al. [21] perform random walks over network graphs to
uild a coarsened graph with information about different edge
ypes. In this latter approach, the coarsened graph’s features
re then used in conjunction with the original graph as the
nput to a H-GNN module. Cavallari et al. [46] propose ComE, a
ramework based on a particular setting of graph embeddings
argeting embedding communities instead of individual nodes.
n particular, each community can be modeled as a multivariate
aussian distribution in the 2D space and the learning of the
raph structure hinges upon a closed loop among community em-
eddings, community detection, and node embeddings. Similarly,
n order to learn node representations, it is possible to feed the
ositive pointwise mutual information matrix directly to deep
tacked sparse autoencoders [47].
Finally, adversarial approaches have also been gaining popu-

arity. For instance, Wang et al. [48] propose GraphGAN, a graph
epresentation learning framework leveraging generative adver-
arial networks. Along these lines, Wang et al. [49] introduced
ANE in order to simultaneously learn node representations and
dentify network communities.

Table 1 summarizes the approaches overviewed here, with
brief description of advantages and limits of each. In par-

icular, the ‘‘Dataset & Performances" column lists the datasets
ach approach was tested over, reporting performances in terms
f the metrics detailed in the ‘‘Metrics" column. The discus-
ion so far highlighted how, while the variety of methodologies
hat have been applied to the issue of community detection is
nspiring and encouraging, there is still room for vast improve-
ent from several directions. In particular, the majority of the
pproaches overviewed here rely on a pre-processing stage on
he OSNs under investigation, so to extract relevant topologi-
al/semantic features, or to generate latent representations that
an subsequently be used as input to a complex neural network.
3

Taking into account the most recent results in the literature,
in this paper we propose a semi-supervised approach for com-
munity detection in OSNs based on deep learning techniques.
However, departing from previous approaches, we avoid prepro-
cessing and consider the whole network as the real input to the
system. This allows us to fully preserve both local and global
structural information about a network’s graph, fully exploiting
the topological characteristics of the graph itself, and smartly
addressing the scalability issues for the high dimensionality of
the adjacency matrix. Specifically, using the entire adjacency
matrix, we preserve all proximity relationships — in contrast to
other approaches guaranteeing second-order proximity at best
[20,43,44].

3. Convolutional neural networks over sparse matrices

This paper approaches the problem of community detection
within OSNs by expanding on previous semi-supervised deep
learning techniques, and exploits CNNs with sparse input matri-
ces.

CNNs are a well-known type of deep learning architecture,
employing a mathematical operation called ‘‘convolution’’ to per-
form various tasks such as classification and segmentation. At its
core, a simple CNN is a sequence of the following four layers: an
input layer, a convolutional layer, a max-pooling layer, and a Fully
Connected layer [50].

In our methodology, the CNN input layer handles a user-to-
user matrix, whose elements can assume several meanings —
such as the similarity measure of interest of two users with re-
spect to the same contents, presence of a friendship relationship,
and so on. More specifically, the network receives in input a two-
dimensional adjacency matrix (n × n, where n is the number of
users). Slices of the adjacency matrix are obtained by extract-
ing individual rows. Each row, represented as a vector, is then
transformed into a matrix itself. The result is a set of n adja-
cency matrices, each matrix representing adjacency relationships
between a specific user and the rest of the network.

3.1. Dimensionality issues

The core of our proposal is to exploit CNNs to assign users
to appropriate communities, by leveraging prior network infor-
mation (e.g. adjacency relations) in the training phase. Thus, we
fundamentally rely on an adjacency matrix which explicitly rep-
resents the relationships among all users in an OSN. As discussed
before, the high number of users in modern OSNs is a major chal-
lenge for computationally effective approaches. Obviously, the
size of the adjacency matrix increases as the size of the network
increases. However, users will have established relationships only
with a relatively small subset of the actual network, thus resulting
in high dimensional matrices that are fundamentally sparse.

Building on this insight, the idea at the core of this paper
is to face the dimensionality issue by complementing the CNN
approach with sparse matrix algebra. In particular, we propose a
convolutional layer optimized for the computation of the convo-
lution between high dimensional sparse matrices. The new layer
performs the least possible number of convolutions, exclusively
computing operations where the adjacency sub-matrix has effec-
tively non-zero values. In addition, the pooling layer has been
modified to deal with reduced feature maps from the convolution
output.

Example 3.1. Fig. 1 shows a step by step decomposition of the
computation of sparse convolutions. In this example, the adja-
cency matrix has only two non-zero elements, and thus convo-
lutions are only performed over these values. Setting null values
automatically – without explicit computations – for each other
sub-component of the matrix.

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

T
S
P

o
s
t
g
w
t
a
i
m

able 1
ummary of the state-of-the-art approaches reviewed in Section 2. The ‘‘Dataset & Performances’’ column contains the datasets each approach was evaluated over.
erformance over each dataset is reported in terms of the metrics detailed in the ‘‘Metrics’’ column, as Dataset(Score).
Reference Pros Cons Metrics Dataset & Performances

[37] (2010) Learning method based on random
walk using authoritative instance to
reduce the amount of training data.

Perform a pre-processing
stage for extracting relevant
features or creating latent
representation that are
computed by a Neural
Network failing to preserve
proximity order.

Macro average F1 UMBCBlog (0.91), AGBlog(0.93) Cora
(0.78), MSPBlog (0.89) CiteSeer (0.68)

[38] (2018) LSTM model combining user,
community and text features to
mitigate possible conflicts among
communities.

Area Under Curve Reddit (0.76)

[40] (2016) Semi-supervised approach based on a
modularity function and
low-dimensional embeddings.

Normalized Mutual Information Karate (1.00), Dolphins (0.889)
Friendship6 (0.889), Friendship7
(0.888) Football (0.907), Pollbooks
(0.927) Polbooks (0.552) Polblogs
(0.389) Cora (0.463)

[39] (2015) Semi-supervised learning framework
combining network topology and prior
information.

Normalized Mutual Information Karate (1.00), Dolphins (1.000)
Friendship6 (0.965), Friendship7
(0.973) Football (0.942), Pollbooks
(0.937)Polblogs (1.000)

[41] (2017) Graph Neural Network model with the
non-backtracking operator defined on
the line graph.

Accuracy Amazon (0.74), DBLP (0.78) Youtube
(0.9)

[19] (2014) Unsupervised learning method for
representing social graph relations
using a random walk generator and
SkipGram.

Macro-F1 Micro-F1 BlogCatalog (0.289, 0.420), Flickr
(0.246, 0.385) Youtube (0.354, 0.427)

[46] (2017) Graph embedding in which the
learning process hinges upon a closed
loop among community embeddings,
community detection and node
embeddings.

Macro-F1 Micro-F1 BlogCatalog (0.324, 0.441), Flickr
(0.268, 0.416) Wikipedia (0.112, 0.500),
DBLP (0.924, 0.928) Karate Club
(1.000, 1.000)

[45] (2019) Node embedding approach using
meta-path based Neighbors
hierarchically.

Macro-F1 Micro-F1 DBLP (0.930, 0.939), IMDB
(0.939, 0.543) ACM (0.906, 0.905)

[21] (2019) Embedding model based on latent
associations of different types of edges.

Accuracy AIFB (0.972), MUTAG (0.823) BGS
(0.931), AM (0.904)

[20] (2016) Learning latent representation using
random walk generator and SkipGram
with a controlled path sampling
process preserving a first order
proximity.

Pre-processing is performed to
extract relevant features
preserving at maximum
second order proximity.

Macro-F1 Micro-F1 BlogCatalog (0.290, 0.391), PPI
(0.191, 0.242) Wikipedia (0.274, 0.581)

[44] (2015) Network embedding based on a
particular objective function for
preserving first and second proximity
order.

Macro-F1 Micro-F1 Wikipedia (0.836, 0.837), Flickr
(0.257, 0.406) Youtube (0.362, 0.430),
DBLP (0.651, 0.660)

[43] (2016) Semi-supervised deep model for
capturing the network structure
preserving first and second proximity
order.

Macro-F1 Micro-F1 BlogCatalog (0.312, 0.448), Flickr
(0.261, 0.411) Youtube (0.373, 0.442),
Arxiv (0.489, 0.576) 20newsgroup
(0.566, 0.701)

[48] (2018) Learning an innovative graph
representation leveraging generative
adversarial networks and a novel
graph softmax.

Accuracy Macro-F1 BlogCatalog (0.232, 0.330), arXiv
AstroPh (0.855, 0.859) arXiv GrQc
(0.849, 0.853), Wikipedia (0.213, 0.194)
MovieLens 1M (0.298, 0.243)

[47] (2019) Deep stacked sparse autoencoders able
to learn the node representation.

Macro-F1 Micro-F1 BlogCatalog (0.328, 0.441), Flickr
(27.01, 42.16) Cora (0.78220.7939)

[49] (2021) CANE framework able to learn the
node representation and identify the
network communities using adversarial
learning.

Accuracy Macro-F1 BlogCatalog (0.882, 0.334), arXiv
AstroPh (0.885, 0.881) arXiv GrQc
(0.861, 0.871), Wikipedia
(0.879, 0.871)MovieLens 100k
(0.921, 0.916) AmericanAir Traffic
(0.917, 0.914), Twitter (0.881.0.877)

This paper (2021) A semi-supervised approach combines
topological and context information
modeling OSN connections as sparse
matrices to reduce computational
costs.

The parameter tuning at its
best can be computationally
expensive due to the huge size
of the input matrix.

Macro-F1 Micro-F1 BlogCatalog3 (0.351, 0.479), Flickr
(0.297, 0.445), Youtube (0.419, 0.479)
Fig. 1. An example of Sparse convolution. Given the sparsity of the matrix, convolution operations are performed exclusively around the non-zero elements (3 in
total).
a
e
T
t
t
r
e
A
p
p
z
p
m
r

3.2. SparseConv2D

The SparseConv2D algorithm (Algorithm 1) illustrates how
sparse convolutions are performed.

Rows 2–3 describe how to compute the dimension of the
resulting feature maps, while row 4 illustrates a 180◦ rotation
f the kernels. The loop of rows 5–7 takes each line of the
parse input matrix, each representing a single, individual node
o be processed, and it performs a reshape operation in order to
enerate w×hmatrices (where w and h are respectively reshaped
eight and height) that are then added to the SparseMatrix list
hrough the Append function. The matrices obtained in this way
re still scattered and match with the adjacency matrices of
ndividual users. At rows 8–11 the previously obtained adjacency
atrices are iteratively selected. Once the mth master is taken,
 t

4

ll the indexes corresponding to the positions of the non-zero
lements are memorized through the IndicesNonZero function.
hen, an empty list is initialized so to memorize the indexes
hat have carried out the convolution, thus avoiding performing
he operation over the same values multiple times. The kernels
eceived in input are iteratively selected and the convolution of
ach node is performed for each of the owned kernels (row 12).
fter selecting the mth adjacency matrix and the kth kernel, the
ositions to be convoluted must be identified (rows 13–14). In
articular, the first loop provides the position of the next non-
ero element on the adjacency matrix, while the second one
rovides all the indexes necessary to center the filter so that it
atches the identified sub-matrix, as well as the position of the

esult within the feature maps. Rows 15–17 verify that the iden-
ified index has not already been used within the convolution.

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

E

1
1
1
1
1
1

1

1

1

1

2

t
w

n

3

g
v
n
s
u
s

o
n
(
c
W
p
m
w
e
t
n
i

e
t

3

s
a
c
t
l
z
a

4

n
s

f
l

Algorithm 1 SparseConv2D

Require: Sparse Matrix m, Matrix size mSize, Kernels k, Number
of kernels numk, Reshaped width w, Reshaped height h

nsure: mSize matrices of dimension (w− KernelSize+ 1)× (h−
KernelSize+ 1) representative of the Feature Maps

1: procedure SparseConv2D(m,mSize, k, numK , w, h)
2: FMSizew← w − size(k)+ 1
3: FMSizeh← h− size(k)+ 1
4: Kernels← Rotate180(k)
5: for i← 0 to mSize do
6: s← Take the i-th row ofm and reshapes it into a sparse

matrix s of w × h dimension.
7: SparseMatrix← Append(s)
8: for m← 0 to mSize do
9: rowMatrix← SparseMatrix[m]
0: NonZeroElement ← IndicesNonZero(rowMatrix)
1: featureMapsIndices← EMPTY
2: for k← 0 to numK do
3: for each elements into NonZeroElement do
4: for each central position (rindex, cindex) do
5: if rindex and cindex not in featureMapsIndices

then
6: Selects from m-th rowMatrix the sub-

matrix get around the position element (rindex, cindex). The
dimension of sub-matrix is the same as kernel size.

7: Performs the convolution between sub-
matrix and k-th kernel.

8: Appends rindex and cindex into
featureMapsIndices.

9: Adds the convolution result obtained from
node m and k − th kernel to the position (rindex, cindex) of the
associated featureMaps.

0: return featureMaps

If this is verified, the sub-matrix obtained around the non-zero
index is selected and the convolution between that sub-matrix
and the selected kernel is performed. The indexes of the element
on which the convolution is realized are then added to a special
list, keeping track of the elements the convolution has already
been carried over. Finally, the result of the convolution is stored
in the feature maps associated with the m-node and kth kernel, in
he previously evaluated position (row 18–19). The return value
ill be the set of all the computed features maps (row 20).
It is worth noting that the initial weight Wij at each layer can

be computed according to the method shown in [51], assum-
ing the biases are set to 0, with the following commonly used
heuristic:

Wij ∼ U
[
−1
√
n
,

1
√
n

]
(1)

U being an uniform distribution in the defined interval, and n the
umber of W kernel matrix columns.

.3. Max-pooling

A Max-pooling layer is generally applied on the feature maps
enerated from the convolutional layer to compute the maximum
alue for each patch in a map, creating a new set of the same
umber of pooled feature maps — each strictly of a smaller
ize of the original map. These reduced feature maps are then
sed within a second convolutional layer. Algorithm Algorithm 2
hows how to implement max-pooling for sparse feature maps.
5

Fig. 2. CNN workflow with TensorFlow.

As shown at row 2, we first have to compute the number
f non-zero values. Then, two loops are used to discover those
on-zero values over which to perform max-pooling operations
rows 3–6). We identify the indexes of non-zero values, then we
ompute the max-pooling windows containing a particular value.
e check if a max-pooling window has already been used in a
revious step (row 7). We verify if non-zero values of a feature
ap are near to the matrix edges, in which case the max-pooling
indow will have to be smaller (rows 8, 10, 12 and 14). For
ach condition, there is a different feature map slice, according
o the selected max-pooling window (9, 11, 13, and 15). If a
on-zero value is far from the edges, the max-pooling window
s m1×m2, where m1 and m2 are respectively its height and the
weight. Rows 16–17 perform the actual max-pooling operations.
First, the sparse matrix returned by the slicing function is ‘‘made"
dense. Successively, we obtain the max element among m1 · m2
lements. Finally, we compute the relevant indexes and extract
he non-zero values (rows 18–19).

.4. Complexity

The complexity of the convolution operation is tied to the
ize of the input and kernel matrices. In particular, let M × N
nd k × j be an input and a kernel matrix, respectively. The
omputational cost of performing the convolution operation is
hen fixed to O(MNkj). As discussed in Section 3, our approach
everages the sparsity of input matrices and considers only non-
ero elements. Thus, O(MNkj) is the worst case for our modified
lgorithms, improving overall efficiency.

. Architecture

Fig. 2 shows the workflow for our semi-supervised commu-
ity detection system, together with the core details of the CNN
tructure (implemented using TensorFlow [52]).1
Data are essentially processed within the CNN, which per-

orms n training step, minimizing the calculated loss. In particu-
ar, the optimizer (named GradientDescentOptimizer) is necessary

1 https://www.tensorflow.org/.

https://www.tensorflow.org/

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

1
1
1
1
1
1

1
1
1
1

Algorithm 2 MaxPooling

1: procedure MaxPooling(FeatureMap, m1, m2, f1, f2)
2: NonZeroElements←countNonZero(FeatureMap)
3: for index← 0 to NonZeroElements do
4: indX, indY← Indices(index, FeatureMap)
5: XReg← Int(indX/m1) * m1
6: YReg← Int(indY/m2) * m2
7: if [XReg/m1,YReg/m2] not in indicesReducedFM then
8: if XReg + m1 > f1 and YReg + m2 > f2 then
9: reg← Slice(FeatureMap, XReg, YReg, f1-XReg, f2-YReg)
0: else if XReg + m1 > f1 then
1: reg← Slice(FeatureMap, XReg, YReg, f1-XReg, m2)
2: else if YReg + m2 > f2 then
3: reg← Slice(FeatureMap, XReg, YReg, m1, f2-YReg)
4: else
5: reg← Slice(FeatureMap, XReg, YReg, m1, m2)
6: regionDense← Dense(reg)
7: maxElement← MAX(regionDense)
8: indicesReducedFM← XReg/m1,YReg/m2
9: valuesReducedFM← maxElement

return ReducedFeatureMap
(
o
c

to update a network’s weights in order to reduce the loss function
(sparse softmax cross entropy) by performing a back propagation
on the SparseConv2D function. The training phase is depicted
as a cycle in Fig. 2, since this is an iterative process aimed at
identifying the best parameters of our model.

We then have two main components:

• Data Manipulation: Two CSVs are received as input, one
related to the dataset, consisting of the global adjacency ma-
trix for the network, and the other one corresponding to the
ground truth. The adjacency matrix is saved as SparseTen-
sor. We apply sparse_reshape over each row to obtain the
adjacency matrix corresponding to each user.
• SparseConv2D: Corresponds to the algorithm described in

3.2, implemented through TensorFlow in Python. It performs
the convolution operation with sparse matrices, replacing
the existing Conv2D module of TensorFlow, which works for
dense matrices.

This process results in a CNN trained for community detection
with respect to the incoming dataset (training set).

5. Experimental evaluation

This section describes the set of experiments conducted in
order to evaluate the efficiency, efficacy, and robustness of the
proposed approach. For completeness, we compare the results of
our methodology with respect to a variety of different baseline
algorithms and datasets.

5.1. Experimental protocol

In order to evaluate the proposed approach, three types of
experiments have been performed:

• Efficiency analysis: The efficiency of the SparseConv2D op-
eration is evaluated in terms of running times with respect
to matrices of different size and density degrees.
• Efficacy analysis: The efficacy of the proposed approach is

compared to 8 baseline methods (DeepWalk [19], SDNE [43],
LINE [44], SpectralClustering [53], Modularity [54],
EdgeCluster [55], wvRN [56], and Majority).
 b

6

• Model Robustness: We evaluate how the efficacy of the
approach is affected by the number of deleted social graph
edges.

We used five different datasets for our experiments: four
existing datasets summarized in Table 2, and an artificial dataset
generated in order to evaluate the performance of our system
when varying parameters like density and matrix size.

The network model is composed of different layers: a Spar-
seConv2D, a bias_add, a relu activation function, a Maxpooling2D,
and a fully connected layer. In particular, the SparseConv2D algo-
rithm is composed of different filters, whose size ranges from 3 to
5. The number of filters varies according to the network topology
and size, while we use the GradientDescentOptimizer optimizer in
order to minimize loss functions to train the network’s weights.
Furthermore, the optimization of the model’s parameters is in-
vestigated in Sections 5.2 and 5.3 in terms of number of kernels,
learning rate, optimizer, and size of feature maps.

Experiments were run on Google Colab equipped with one
single core hyper threaded Xeon Processors @2.3Ghz, 12 GB of
RAM and a Tesla K80 having 2496 CUDA cores and 12 GB GDDR5
VRAM. As mentioned, our system was implemented in Python 3.6
with TensorFlow 2.0 as back-end.

5.2. Efficiency analysis

This section details the efficiency of the SparseConv2D algo-
rithm in terms of running time. In particular, experiments were
performed on artificial datasets with the following characteris-
tics:

• fixed density and variable size;
• variable density and fixed size.

This type of analysis was conducted over artificially generated
datasets to better evaluate performance at different sizes and
densities. The first set of experiment varied the size (number of
nodes N) of the adjacency matrix from 10.000 to 200.000, with a
density value ρ fixed to 10−4. Results are shown in Fig. 3.

We compare our approach with respect to a Divide et Impera
DeI) strategy, which differs from ours in its use of the Conv2D
peration instead of SparseConv2D to realize the CNNs. This
omparison thus allowed us to explicitly evaluate the differences

etween SparseConv2D and Conv2D operations.

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

f
t
n
i
r
a

1
R

n
e
t
d
b
s

S
z
m
e

Table 2
Datasets’ characterization (|V |, |E| and |Y | are respectively the number of vertices, edges and labels while ρ, CC, d
and D(v) are the density, average cluster coefficient, diameter and average degree).
Name |V | |E| |Y | ρ CC d D(v)

email-Eu-core 1,005 25,571 42 2.5 × 10−3 0.3994 7 25.44
BlogCatalog3 10,312 333,983 39 6.3 × 10−3 0.460 5 64.9
Flickr 80,513 5,899,882 195 1.8 × 10−3 0.1652 3 146.7
YouTube 1,138,499 2,990,443 47 4.5 × 10−6 0.0808 20 5.25
Fig. 3. This figure shows the running time variation of the SparseConv2D and
DeI approach by varying the size of the network (number of nodes N) and fixed
density (ρ = 10−4).

Fig. 4. Running time variation of SparseConv2D and DeI when varying the
density of the network (ρ) and with fixed network size (N = 50,000).

As shown in Fig. 3, the approach based on SparseConv2D is
aster when the matrix has a reduced size, in line with the fact
hat as the number of non-zero values increases, so does the
umber of convolutions to be performed. We evaluated ten runs
n order to provide an estimate of the execution time with the
elative variance. The average variance obtained with regards to
ll the executions is 9.72%.
In a second set of experiments, we varied the value for ρ from

0−8 to 10−3, while the number of nodes was fixed to 50.000.
esults are shown in Fig. 4.
Once again, the execution time is directly proportional to the

umber of non-zero values present in the adjacency matrix. It is
asy to note that the SparseConv2D operation is convenient when
he matrix is very sparse, while it is extremely slow with smaller
egrees of sparsity. In contrast, the DeI approach has a constant
ehavior, as the number of elements it works on is always the
ame regardless of density.
Finally, to better highlight how the execution time of the

parseConv2D approach strongly depends on the number of non-
ero values present in the matrix, we considered an adjacency
atrix with a higher number of nodes (1, 000, 000), and differ-
nt density values (varying from 10−8 to 10−6). Results for this

specific case are shown in Fig. 5.
This last case illustrates how even with matrices of extreme

size, there are low density cases in which performance is partic-
ularly good — even outrunning performance over smaller datasets
7

Fig. 5. SparseConv2D running times varying ρ (N = 1000 000).

with higher density. Consider the case of 50,000 nodes and
density equal to 10−4, with a corresponding execution time of
about 8 seconds, and contrast it with the corresponding case
of 1, 000, 000 nodes and density equal to 10−7. In this latter
case, running time is around the 3.62 s. Crucially, in the first
case the number of non-zero values is equal to 250,000, while
in the second case is 100,000. Thus, as expected, execution time
is sensitive to the number of non-zero values, and not absolute
size of the input matrix.

5.3. Efficacy analysis

The following experiments were performed using our CNN
implementation, as described in Section 4, over three real world
datasets: BlogCatalog3, Flickr and Youtube. We observe the loss
value, measured at each step of network training, according to
the following parameters characterizing the CNN:

• number of kernels;
• learning rate;
• type of optimizer.

The CNNmodel has been trained using the Tensorflow library’s
loss function tf.losses.sparse_softmax_cross_entropy. For each eval-
uation, training is performed by minimizing the loss value. Specif-
ically, training ends when the difference between the loss val-
ues obtained in two successive steps is lower than a threshold
value ϵ:

|lossi − lossi+1| < ϵ

Furthermore, for the same optimizer and the same number
of kernels, two different curves have been calculated, each with
a different learning rate. To analyze the trend of the loss value
when varying learning rate, the minimum number of steps that
saturated the loss value of at least one of the two curves was
considered as the total number of steps.

5.3.1. Gradient descent optimizer
We then evaluated the performance of the gradient descent

optimizer through TensorFlow’s basic functions tf.train.Gradient-
DescentOptimizer. The gradient descent method is an iterative

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

m
t
f
0

i
k
s
o

w
f

a
l

Fig. 6. CNN Gradient descent optimizer with 3 Kernels 3×3 .

Fig. 7. CNN Gradient descent optimizer with 6 Kernels 3×3 .

Fig. 8. Adam optimizer with 3 Kernels 3×3 .

ethod, which searches for the minimum/maximum of a func-
ion. In the case we considered, the goal is to minimize the loss
unction. The learning rates chosen for the experimentation are
.1 and 0.01.
Fig. 6 shows the loss value trend when the number of kernels

s 3, while Fig. 7 shows the same trend when the number of
ernels is 6. From these Figures, it is easy to see how the two
et ups exhibit similar trends, and thus that varying the number
f kernels does not results in any significant changes.
Importantly, the curve corresponding to the gradient descent

ith learning rate 0.1 shows how the loss value is minimized
aster than in the case of learning rate 0.01: after 4.000 steps, the
loss value is approximately 0.3 in first case, while in the second
one is 2.4.

5.3.2. Adam optimizer
The Adam optimizer is different from the gradient descent

method. While the latter always keeps the learning rate constant,
Adam adapts it.

Figs. 8 and 9 show the loss trend when the number of kernels
is kept equal to 3 and 6, respectively. While the trend for the two
8

Fig. 9. Adam optimizer with 6 Kernels 3×3 .

configurations is overall very similar, with the first one we obtain
a slightly lower loss given the same step.

As expected, the saturation of the loss occurs in fewer steps
than with gradient descent. In fact, we reach a loss of about 0.6
after 150 steps using a learning rate of 0.03, while the number
of steps to obtain the same loss value is about 300 considering
a learning rate of 0.01. Generally, the loss value with the Adam
optimizer does not fall below 0.5.

5.3.3. Evaluation metrics
Since the problem at hand is basically a multi-label classifica-

tion task, we evaluate the performance of our system in terms of
Macro− F1 and Micro− F1 [43,54].

Consider X as one of the possible labels. We refer to TP(X),
FP(X), and FN(X) as the number of true positives, false positives
nd false negatives, respectively. Assume then that C is the set of
abels. MacroF1 and MicroF1 are defined as follows:

• Micro−F1 assigns equal weight to each instance, defined as:

Pr =
∑

X∈C TP(X)∑
X∈C (TP(X)+ FP(X))

(2)

R =
∑

X∈C TP(X)∑
X∈C (TP(X)+ FN(X))

(3)

Micro− F1 =
2 ∗ Pr ∗ R
Pr + R

(4)

where Pr is Precision and R Recall.
• Macro− F1 assigns equal weight to each class, defined as:

Macro− F1 =
∑

X∈C F1(X)
|C |

(5)

where F1(X) is the F1-measure for the label X.

5.3.4. Classification results
With all preliminaries in place, we can finally discuss the

performance of our system in terms of effectiveness over different
real-word datasets.

In particular, we built the training set via stratification on the
adjacency matrix, so that the percentage of each class is balanced
across both training and test set. As mentioned, performance was
evaluated in terms of Macro − F1 and Micro − F1 for different
training set sizes: 10%, 30%, 60% , 90% for the BlogCatalog3 dataset
and 1%, 3%, 6% , 9% for the Flickr and Youtube datasets.

To evaluate the efficiency of the sparse CNN approach, we
chose a variety of existing methods as baseline algorithms.

• DeepWalk [19]: An approach to learn latent representation
of vertices in a network.

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

T
P

F
a
h
w
k

a

w
s
r

able 3
erformance on BlogCatalog3.

% Labeled Nodes 10% 30% 60% 90%

Micro-F1 (%) CNN 30.51 39.67 44.70 47.92
CANE 28.99 39.21 42.98 45.01
GraphCAN 28.78 39.01 42.71 44.76
ComE 27.18 38.64 41.68 44.12
DNNNC 28.15 38.91 41.89 44.59
SDNE 31.11 36.70 41.88 44.88
LINE 30.43 35.99 41.41 43.46
DeepWalk 36.00 39.60 41.30 42.00
SpectralClustering 31.06 37.27 40.99 42.62
EdgeCluster 27.94 31.85 35.00 36.29
Modularity 27.35 31.77 36.13 38.18
wvRN 19.51 25.62 31.81 34.28
Majority 16.51 16.61 16.99 17.26

Macro-F1 (%) CNN 14.72 24.98 31.92 35.12
CANE 18.12 23.85 30.04 33.42
GraphCAN 17.88 23.54 29.87 33.01
ComE 16.21 22.78 28.98 32.46
DNNNC 17.55 23.21 29.45 32.83
SDNE 19.88 24.94 28.11 31.22
LINE 18.67 24.81 27.91 30.64
DeepWalk 21.30 25.30 27.60 28.90
SpectralClustering 19.14 25.97 29.46 31.78
EdgeCluster 16.16 20.48 23.64 24.92
Modularity 17.36 20.80 23.41 24.97
wvRN 6.25 11.64 17.18 19.57
Majority 2.52 2.52 2.63 2.62

Table 4
Performance on Flickr.

% Labeled Nodes 1% 3% 6% 9%

Micro-F1 (%) CNN 25.94 35.88 39.43 44.51
CANE 23.47 33.49 37.89 42.54
GraphCAN 23.01 33.10 37.77 42.32
ComE 22.66 32.68 36.59 41.67
DNNNC 22.79 32.99 37.14 42.16
SDNE 23.74 34.76 37.83 41.14
LINE 23.01 34.44 37.75 40.65
DeepWalk 32.40 35.90 37.70 38.50
SpectralClustering 27.43 31.63 33.95 40.14
EdgeCluster 25.75 29.14 31.53 32.19
Modularity 22.75 27.30 29.33 29.17
wvRN 17.70 15.72 19.42 22.51
Majority 16.34 16.34 16.44 16.67

Macro-F1 (%) CNN 12.15 20.91 26.46 29.74
CANE 14.08 19.97 25.73 27.56
GraphCAN 13.92 19.91 25.63 27.39
ComE 12.78 19.21 25.11 26.88
DNNNC 13.78 19.66 25.21 27.01
SDNE 11.69 19.87 23.29 26.13
LINE 11.52 19.76 23.01 25.78
DeepWalk 14.00 19.60 22.90 24.6
SpectralClustering 13.84 19.44 22.36 23.82
EdgeCluster 10.52 15.91 18.54 20.78
Modularity 10.21 15.24 16.64 17.14
wvRN 1.53 2.91 5.56 8.00
Majority 0.45 0.45 0.44 0.47

• SDNE [43]: This method relies on a deep model using a
Laplacian eigenmap.
• LINE [44]: A network embedding method based on negative

samples and stochastic gradient descent.
• ComE [46]: This method relies on node and community

embedding for learning graph embeddings.
• GraphGAN [48]: A graph representation framework to learn

embeddings based on the edge-wised information.
• CANE [49]: This framework relies on an adversarial learning

framework to jointly learn node representation and identify
network communities.
 t

9

Table 5
Performance on Youtube.

% Labeled Nodes 1% 3% 6% 9%

Micro-F1 (%) CNN 33.21 42.18 44.87 47.91
CANE 36.81 40.07 42.27 45.12
GraphCAN 36.67 39.99 42.11 44.99
ComE 36.01 39.24 41.39 43.91
DNNNC 36.57 39.55 41.89 44.10
SDNE 34.87 40.24 42.73 44.29
LINE 34.01 40.11 42.11 43.09
DeepWalk 37.95 40.08 41.72 42.78
SpectralClustering 24.41 36.01 39.42 40.21
EdgeCluster 23.90 35.53 38.63 39.92
Modularity 23.15 34.98 37.77 39.01
wvRN 26.79 33.10 37.38 38.68
Majority 24.90 25.25 25.33 25.38

Macro-F1 (%) CNN 24.12 34.44 37.85 41.93
CANE 27.59 33.76 35.24 38.71
GraphCAN 27.41 33.59 35.12 38.49
ComE 26.88 32.81 34.66 37.86
DNNNC 27.12 33.14 34.92 38.06
SDNE 26.22 33.47 34.88 37.34
LINE 26.01 33.15 34.76 36.27
DeepWalk 29.22 33.06 34.66 35.42
SpectralClustering 20.05 28.77 31.58 32.12
EdgeCluster 19.48 28.15 30.65 31.45
Modularity 19.33 27.77 30.11 30.88
wvRN 13.15 19.66 25.43 28.33
Majority 6.12 6.21 6.19 6.18

• DNNNC [57]: A deep neural network method based on a
positive pointwise mutual information (PPMI) matrix for
node classification.
• SpectralClustering[53]: This method generates a represen-

tation in Rd from the d-smallest eigenvectors of L, the nor-
malized graph Laplacian of G. Utilizing the eigenvectors
of L implicitly assumes that graph cuts will be useful for
classification.
• Modularity [54]: This method generates a representation

in Rd from the top-d eigenvectors of B, the Modularity
matrix of G. The eigenvectors of B encode information about
modular graph partitions of G, and can be used as features
assuming that modular graph partitions will be useful for
classification.
• EdgeCluster [55]: This method uses k-means clustering to

cluster the adjacency matrix of G. It has been shown to
perform comparably to the Modularity method, with the
added advantage of scaling to graphs which are too large
for spectral decomposition.
• wvRN [56]: The weighted-vote Relational Neighbor is a re-

lational classifier. Given the neighborhood Ni of vertex vi,
wvRN estimates Pr(yj|Nj) with the (appropriately normal-
ized) weighted mean of its neighbors.
• Majority: This naive method simply chooses the most fre-

quent labels in the training set.

It is important to understand how to set the CNN parameters.
irst, we analyzed which kind of optimizer is best suitable for our
pproach. Subsequently, we chose which learning rate to use and
ow many steps to perform. We leveraged a validation test set,
hich was obtained by further dividing the training set by 1

10 , and
eeping the remaining part as training.
Tables 3–5 show the results obtained by training the CNN with

ll classes in the various datasets.
Looking at the results, the CNN approach performs poorly

hen the training set has few instances compared to the test
et (cases 10% e 30%). In fact, compared to the baseline algo-
ithms, it has one of the worst performances. However, when
he training set has a larger number of instances (cases 60% and

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

9
I
t
s
i
i
m
c
n
d
i
l

o

5

e
e
e

l
b
o

D
t

s

Fig. 10. Top-6 approaches in terms of Micro and Macro-F1 on BlogCatalog3 for semi-supervised community detection.
0%), the CNN approach is close to the best case performance.
n particular, the ability to process the entire adjacency matrix,
hus preserving both local and global knowledge about network
tructure, provides a richness of information that can be used to
mprove the performance of the community detection algorithm
n contrast to the state-of-the-art approaches which preserve at
aximum second order proximity. Furthermore, we model OSN
onnections as sparse matrices in order to significantly reduce the
umber of operations that need to be performed, also leveraging
ifferent properties of a network, such as topological and context
nformation. This result supports the general insight that CNNs
earn better the more instances are used during training.

Finally, Fig. 10, 11, and 12 show the top-6 approaches in terms
f Micro and Macro-F1 over the examined datasets.

.4. Robustness evaluation

We evaluate the effectiveness of the proposed approach on the
mail-Eu-core, varying the number of deleted edges. We focus this
valuation on the email-Eu-core dataset because of computational
fficiency issues.
Specifically, the training set was evaluated with respect to the

oss value according to several parameters: learning rate, num-
er of convolutions and max-Pooling levels, number of kernels,
ptimizer, and decaying rate.
First, we show how the choice of the optimizer — Gradient

escent or Adam — affects training set performance when varying
he number of kernels and the learning rate (0.001, 0.01 and 0.1).

Figs. 13, 14, and 15 show how the loss value decreases very
lowly when using Gradient Descent with 0.001 up to a value of
10
3 (after 3000 steps). When choosing a learning rate of 0.1, the
loss value instead reaches 0.4 after 1400 steps. With the Adam
optimizer, the CNN’s loss value of 0.40 in less than 100 steps
when the learning rate is set to 0.01 and 0.1, but after 700 steps
when the learning rate is set to 0.001.

Finally, we evaluate the robustness of the approach with re-
spect to the network evolution. That is, the goal is to evaluate
the accuracy measure when varying the percentage of deleted
edges. In particular, given an input matrix A representative of a
social graph, we define each entry in the matrix according to the
following equation:

A(i, j) = eσ ·(1−s) (6)

where s is the hop count of node n′ to node n, with s0 ≥ s ≥ 1,
σ ∈ (0, 1) the attenuation factor and s0 a user defined hop count
threshold. In other words, we verify that node n′ is reachable from
node n within at least s hops.

The training set has been evaluated by two convolution and
max-pooling levels, 10 kernels, Adam optimizer, and no Decaying
with 300 steps varying the s0 value among 0, 1, 2.

Fig. 16 shows the accuracy of our semi-supervised community
detection approach over the test set, with varying hop count
s0 = 1, 2, 3. Considering then the matrix filled through entries
with s0 = 2, accuracy gets better: for 10% deleted edges the value
changes from 78% to 85%, an important increase. However, when
comparing the s0 = 2 matrix with the s0 = 3, accuracy does not
improve much more. In fact, for lower percentages accuracy over
s0 = 3 is worse than s0 = 2.

Considering these results, the best set up to maximize accu-
racy prediction values is to use a hop count threshold equal to

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

2
c

6

a
o
w
a
r
e

o
n
e
m
i
r

m
d
i
o
i
I
l
n

Fig. 11. Top-6 approaches in terms of Micro and Macro-F1 on Flickr for semi-supervised community detection.
, a right middle way to exploit the advantages of the sparse
onvolution algorithm.

. Conclusion and future work

Community detection in OSNs has received more and more
ttention in the last few years, due to its relevance for a variety
f applications, and to the technological challenges that come
ith it. In particular, the ever growing nature of these systems
nd the complex ontology of relationships established over them
epresent important issues to be addressed when developing
ffective and efficient analysis techniques.
With this in mind, and building on recent deep learning meth-

ds, this paper proposed a semi-supervised approach to commu-
ity detection in large social networks, in order to effectively
xploit the topological characteristics of a network’s adjacency
atrix while addressing main problems and limitation of exist-

ng approaches — particularly with respect to the computational
equirements associated to large scale datasets.

Building on the insight that the high dimensional adjacency
atrices representing social connections in large OSNs are fun-
amentally sparse, the approach in this paper proposes a mod-
fication to the convolutional layer of traditional CNNs, which
ptimizes computations over sparse matrices (thus highly reduc-
ng memory usage) by exclusively considering non-zero values.
mportantly, the ability to use the entire adjacency matrix al-
ows us to preserve both local and global knowledge about a
etwork. In turn, and in contrast to other approaches simply
11
preserving second order proximity, our approach is then able to
leverage more general information that can be used to improve
the performance of community detection. In terms of efficiency,
we conducted an extensive evaluation over artificial and real
world datasets, showing good performance in terms of running
time and accuracy. For instance, our results show a 35% running
time decrease with respect to state-of-the-art approaches in the
literature.

While these results are encouraging, there are a variety of
limitations about the proposed solution that should be addressed
in future work. In particular, our CNN based approach requires
the set up of a complex support infrastructure — mainly based on
GPUs. Furthermore, performing parameter tuning (i.e. kernel size,
learning rate, number of epoch) at its best can be computationally
expensive due to the huge size of the input matrix.

Future work will be devoted to define a new infrastructure
based on TensorFlowOnSpark,2 which enables distributed deep
learning, obtaining a faster infrastructure for large scale data
processing. Moreover, while we already considered a variety of
different datasets, extending the evaluation to datasets repre-
sentative of distinct OSNs will help further investigations of the
ways this approach can be leveraged to improve on different
applications of community detection in real world scenarios.

2 https://github.com/yahoo/TensorFlowOnSpark.

https://github.com/yahoo/TensorFlowOnSpark

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345
Fig. 12. Top-6 approaches in terms of Micro and Macro-F1 on Youtube for semi-supervised community detection.
Fig. 13. Training tests using the Gradient Descent optimizer with 3 kernels.

Fig. 14. Training tests using the Gradient Descent optimizer with 10 kernels.
12
Fig. 15. Training test using Adam optimizer with 10 kernels.

Fig. 16. Accuracy with s0 = 1, 2, 3.

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345

C

o
d
d
t
V
o
d
a
p
e

D

c
t

A

p

R

RediT authorship contribution statement

Aniello De Santo: Conception and design of study, Acquisition
f data, Analysis and/or interpretation of data, Writing - original
raft, Writing - review & editing. Antonio Galli: Conception and
esign of study, Acquisition of data, Analysis and/or interpreta-
ion of data, Writing - original draft, Writing - review & editing.
incenzo Moscato: Conception and design of study, Acquisition
f data, Analysis and/or interpretation of data, Writing - original
raft, Writing - review & editing. Giancarlo Sperlì: Conception
nd design of study, Acquisition of data, Analysis and/or inter-
retation of data, Writing - original draft, Writing - review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

All authors approved the version of the manuscript to be
ublished.

eferences

[1] Statista.com, Social media & user-generated content, 2017, https://www.
statista.com/markets/424/topic/540/social-media-user-generated-content.

[2] A. Zareie, A. Sheikhahmadi, M. Jalili, M.S.K. Fasaei, Finding influential
nodes in social networks based on neighborhood correlation coefficient,
Knowl.-Based Syst. 194 (2020) 105580, http://dx.doi.org/10.1016/j.knosys.
2020.105580.

[3] S. Banerjee, M. Jenamani, D.K. Pratihar, Earned benefit maximization in
social networks under budget constraint, Expert Syst. Appl. 169 (2021)
114346, http://dx.doi.org/10.1016/j.eswa.2020.114346.

[4] V. Moscato, G. Sperlı, A survey about community detection over on-line
social and heterogeneous information networks, Knowl.-Based Syst. 224
(2021) 107112, http://dx.doi.org/10.1016/j.knosys.2021.107112.

[5] X. Ding, J. Zhang, J. Yang, Node-community membership diversifies com-
munity structures: An overlapping community detection algorithm based
on local expansion and boundary re-checking, Knowl.-Based Syst. 198
(2020) 105935, http://dx.doi.org/10.1016/j.knosys.2020.105935.

[6] Z. Sun, Y. Sun, X. Chang, Q. Wang, X. Yan, Z. Pan, Z. ping Li, Community
detection based on the matthew effect, Knowl.-Based Syst. 205 (2020)
106256, http://dx.doi.org/10.1016/j.knosys.2020.106256.

[7] J. Li, T. Cai, K. Deng, X. Wang, T. Sellis, F. Xia, Community-diversified
influence maximization in social networks, Inf. Syst. 92 (2020) 101522,
http://dx.doi.org/10.1016/j.is.2020.101522.

[8] H. Huang, H. Shen, Z. Meng, H. Chang, H. He, Community-based influence
maximization for viral marketing, Appl. Intell. 49 (6) (2019) 2137–2150,
http://dx.doi.org/10.1007/s10489-018-1387-8.

[9] J. Zheng, S. Wang, D. Li, B. Zhang, Personalized recommendation based
on hierarchical interest overlapping community, Inform. Sci. 479 (2019)
55–75, http://dx.doi.org/10.1016/j.ins.2018.11.054.

[10] E. Yalcin, A. Bilge, Novel automatic group identification approaches for
group recommendation, Expert Syst. Appl. 174 (2021) 114709, http://dx.
doi.org/10.1016/j.eswa.2021.114709.

[11] P. Bedi, C. Sharma, Community detection in social networks, Wiley In-
terdiscip. Rev.: Data Min. Knowl. Discov. 6 (3) (2016) 115–135, http:
//dx.doi.org/10.1002/widm.1178.

[12] H. Fani, E. Bagheri, Community detection in social networks, Encycl. Seman.
Comput. Robot. Intell. 1 (01) (2017) 1630001, http://dx.doi.org/10.1142/
S2425038416300019.

[13] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, P. Spyridonos, Community
detection in social media, Data Min. Knowl. Discov. 24 (3) (2012) 515–554,
http://dx.doi.org/10.1007/s10618-011-0224-z.

[14] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, Y. Shi, Graph k-means based on leader
identification, dynamic game and opinion dynamics, IEEE Trans. Knowl.
Data Eng. (2019) http://dx.doi.org/10.1109/TKDE.2019.2903712.

[15] M. Rezvani, W. Liang, C. Liu, J.X. Yu, Efficient detection of overlapping
communities using asymmetric triangle cuts, IEEE Trans. Knowl. Data Eng.
30 (11) (2018) 2093–2105, http://dx.doi.org/10.1109/TKDE.2018.2815554.
13
[16] X. Zeng, W. Wang, C. Chen, G.G. Yen, A consensus community-based
particle swarm optimization for dynamic community detection, IEEE Trans.
Cybern. (2019) http://dx.doi.org/10.1109/TCYB.2019.2938895.

[17] X. Ma, L. Gao, X. Yong, L. Fu, Semi-supervised clustering algorithm for
community structure detection in complex networks, Physica A 389 (1)
(2010) 187–197, http://dx.doi.org/10.1016/j.physa.2009.09.018.

[18] X. Liu, W. Wang, D. He, P. Jiao, D. Jin, C.V. Cannistraci, Semi-supervised
community detection based on non-negative matrix factorization with
node popularity, Inform. Sci. 381 (2017) 304–321, http://dx.doi.org/10.
1016/j.ins.2016.11.028.

[19] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2014, pp.
701–710, http://dx.doi.org/10.1145/2623330.2623732.

[20] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2016, pp. 855–864, http:
//dx.doi.org/10.1145/2939672.2939754.

[21] S. Zhu, C. Zhou, S. Pan, X. Zhu, B. Wang, Relation structure-aware hetero-
geneous graph neural network, in: 2019 IEEE International Conference on
Data Mining (ICDM), IEEE, 2019, pp. 1534–1539, http://dx.doi.org/10.1109/
ICDM.2019.00203.

[22] N. Gulbahce, S. Lehmann, The art of community detection, BioEssays 30
(10) (2008) 934–938, http://dx.doi.org/10.1002/bies.20820.

[23] M.A. Porter, J.-P. Onnela, P.J. Mucha, Communities in networks, Notices
Amer. Math. Soc. 56 (9) (2009) 1082–1097.

[24] B. Yang, D. Liu, J. Liu, Discovering communities from social networks:
Methodologies and applications, in: Handbook of Social Network Tech-
nologies and Applications, Springer, 2010, pp. 331–346, http://dx.doi.org/
10.1007/978-1-4419-7142-5_16.

[25] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2010)
75–174, http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[26] M.R. Garey, R.L. Graham, Performance bounds on the splitting algorithm
for binary testing, Acta Inform. 3 (4) (1974) 347–355.

[27] T. Chakraborty, A. Dalmia, A. Mukherjee, N. Ganguly, Metrics for com-
munity analysis: A survey, ACM Comput. Surv. 50 (4) (2017) 54, http:
//dx.doi.org/10.1145/3091106.

[28] X. Xu, N. Yuruk, Z. Feng, T.A. Schweiger, Scan: a structural clustering algo-
rithm for networks, in: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2007, pp.
824–833, http://dx.doi.org/10.1145/1281192.1281280.

[29] A. Clauset, M.E. Newman, C. Moore, Finding community structure in very
large networks, Phys. Rev. E 70 (6) (2004) 066111, http://dx.doi.org/10.
1103/PhysRevE.70.066111.

[30] X. You, Y. Ma, Z. Liu, A three-stage algorithm on community detection in
social networks, Knowl.-Based Syst. 187 (2020) 104822, http://dx.doi.org/
10.1016/j.knosys.2019.06.030.

[31] V. Moscato, A. Picariello, G. Sperlí, Community detection based on game
theory, Eng. Appl. Artif. Intell. 85 (2019) 773–782, http://dx.doi.org/10.
1016/j.engappai.2019.08.003.

[32] L. Xiao, W. Wenjun, H. Dongxiao, J. Pengfei, J. Di, C.V. Cannistraci,
Semi-supervised community detection based on non-negative matrix fac-
torization with node popularity, Inform. Sci. 381 (2017) 304–321, http:
//dx.doi.org/10.1016/j.ins.2016.11.028.

[33] W. Wu, S. Kwong, Y. Zhou, Y. Jia, W. Gao, Nonnegative matrix factorization
with mixed hypergraph regularization for community detection, Inform.
Sci. 435 (2018) 263–281, http://dx.doi.org/10.1016/j.ins.2018.01.008.

[34] M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks re-
veal community structure, Proc. Natl. Acad. Sci. 105 (4) (2008) 1118–1123,
http://dx.doi.org/10.1073/pnas.0706851105.

[35] F. Mercorio, M. Mezzanzanica, V. Moscato, A. Picariello, G. Sperli, DICO:
A graph-DB framework for community detection on big scholarly data,
IEEE Trans. Emerg. Top. Comput. (2019) http://dx.doi.org/10.1109/TETC.
2019.2952765, 1–1.

[36] Y. Najaflou, K. Bubendorfer, Forming dream teams: A chemistry-oriented
approach in social networks, IEEE Trans. Emerg. Top. Comput. (2018)
http://dx.doi.org/10.1109/TETC.2018.2869377, 1–1.

[37] F. Lin, W.W. Cohen, Semi-supervised classification of network data using
very few labels, in: Advances in Social Networks Analysis and Mining
(ASONAM), 2010 International Conference on, IEEE, 2010, pp. 192–199,
http://dx.doi.org/10.1109/ASONAM.2010.19.

[38] S. Kumar, W.L. Hamilton, J. Leskovec, D. Jurafsky, Community interaction
and conflict on the web, in: Proceedings of the 2018 World Wide
Web Conference on World Wide Web, International World Wide Web
Conferences Steering Committee, 2018, pp. 933–943, http://dx.doi.org/10.
1145/3178876.3186141.

[39] L. Yang, X. Cao, D. Jin, X. Wang, D. Meng, A unified semi-supervised
community detection framework using latent space graph regularization,
IEEE Trans. Cybern. 45 (11) (2015) 2585–2598, http://dx.doi.org/10.1109/
TCYB.2014.2377154.

https://www.statista.com/markets/424/topic/540/social-media-user-generated-content
https://www.statista.com/markets/424/topic/540/social-media-user-generated-content
https://www.statista.com/markets/424/topic/540/social-media-user-generated-content
http://dx.doi.org/10.1016/j.knosys.2020.105580
http://dx.doi.org/10.1016/j.knosys.2020.105580
http://dx.doi.org/10.1016/j.knosys.2020.105580
http://dx.doi.org/10.1016/j.eswa.2020.114346
http://dx.doi.org/10.1016/j.knosys.2021.107112
http://dx.doi.org/10.1016/j.knosys.2020.105935
http://dx.doi.org/10.1016/j.knosys.2020.106256
http://dx.doi.org/10.1016/j.is.2020.101522
http://dx.doi.org/10.1007/s10489-018-1387-8
http://dx.doi.org/10.1016/j.ins.2018.11.054
http://dx.doi.org/10.1016/j.eswa.2021.114709
http://dx.doi.org/10.1016/j.eswa.2021.114709
http://dx.doi.org/10.1016/j.eswa.2021.114709
http://dx.doi.org/10.1002/widm.1178
http://dx.doi.org/10.1002/widm.1178
http://dx.doi.org/10.1002/widm.1178
http://dx.doi.org/10.1142/S2425038416300019
http://dx.doi.org/10.1142/S2425038416300019
http://dx.doi.org/10.1142/S2425038416300019
http://dx.doi.org/10.1007/s10618-011-0224-z
http://dx.doi.org/10.1109/TKDE.2019.2903712
http://dx.doi.org/10.1109/TKDE.2018.2815554
http://dx.doi.org/10.1109/TCYB.2019.2938895
http://dx.doi.org/10.1016/j.physa.2009.09.018
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1109/ICDM.2019.00203
http://dx.doi.org/10.1109/ICDM.2019.00203
http://dx.doi.org/10.1109/ICDM.2019.00203
http://dx.doi.org/10.1002/bies.20820
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb23
http://dx.doi.org/10.1007/978-1-4419-7142-5_16
http://dx.doi.org/10.1007/978-1-4419-7142-5_16
http://dx.doi.org/10.1007/978-1-4419-7142-5_16
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb26
http://dx.doi.org/10.1145/3091106
http://dx.doi.org/10.1145/3091106
http://dx.doi.org/10.1145/3091106
http://dx.doi.org/10.1145/1281192.1281280
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1016/j.knosys.2019.06.030
http://dx.doi.org/10.1016/j.knosys.2019.06.030
http://dx.doi.org/10.1016/j.knosys.2019.06.030
http://dx.doi.org/10.1016/j.engappai.2019.08.003
http://dx.doi.org/10.1016/j.engappai.2019.08.003
http://dx.doi.org/10.1016/j.engappai.2019.08.003
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.ins.2018.01.008
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1109/TETC.2019.2952765
http://dx.doi.org/10.1109/TETC.2019.2952765
http://dx.doi.org/10.1109/TETC.2019.2952765
http://dx.doi.org/10.1109/TETC.2018.2869377
http://dx.doi.org/10.1109/ASONAM.2010.19
http://dx.doi.org/10.1145/3178876.3186141
http://dx.doi.org/10.1145/3178876.3186141
http://dx.doi.org/10.1145/3178876.3186141
http://dx.doi.org/10.1109/TCYB.2014.2377154
http://dx.doi.org/10.1109/TCYB.2014.2377154
http://dx.doi.org/10.1109/TCYB.2014.2377154

A. De Santo, A. Galli, V. Moscato et al. Knowledge-Based Systems 229 (2021) 107345
[40] L. Yang, X. Cao, D. He, C. Wang, X. Wang, W. Zhang, Modularity based
community detection with deep learning, in: IJCAI, 2016, pp. 2252–2258.

[41] J. Bruna, X. Li, Community detection with graph neural networks, 2017,
ArXiv Preprint arXiv:1705.08415.

[42] H. Cai, V.W. Zheng, K.C. Chang, A comprehensive survey of graph embed-
ding: Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng.
30 (9) (2018) 1616–1637, http://dx.doi.org/10.1109/TKDE.2018.2807452.

[43] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1225–1234, http://dx.doi.org/10.
1145/2939672.2939753.

[44] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale
information network embedding, in: Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 1067–1077, http://dx.doi.org/
10.1145/2736277.2741093.

[45] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, P.S. Yu, Heterogeneous
graph attention network, in: The World Wide Web Conference, 2019, pp.
2022–2032, http://dx.doi.org/10.1145/3308558.3313562.

[46] S. Cavallari, V.W. Zheng, H. Cai, K.C.-C. Chang, E. Cambria, Learning
community embedding with community detection and node embedding on
graphs, in: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 2017, pp. 377–386, http://dx.doi.org/10.1145/
3132847.3132925.

[47] B. Li, D. Pi, Learning deep neural networks for node classification, Expert
Syst. Appl. 137 (2019) 324–334.

[48] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, M. Guo,
Graphgan: Graph representation learning with generative adversarial nets,
in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32(1),
2018.
14
[49] J. Wang, J. Cao, W. Li, S. Wang, CANE: community-aware network em-
bedding via adversarial training, Knowl. Inf. Syst. 63 (2) (2021) 411–438,
http://dx.doi.org/10.1007/s10115-020-01521-9.

[50] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[51] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[52] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow:
Large-scale machine learning on heterogeneous systems, 2015, Software
available from tensorflow.org. https://www.tensorflow.org/.

[53] L. Tang, H. Liu, Leveraging social media networks for classification, Data
Min. Knowl. Discov. 23 (3) (2011) 447–478, http://dx.doi.org/10.1007/
s10618-010-0210-x.

[54] L. Tang, H. Liu, Relational learning via latent social dimensions, in: Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2009, pp. 817–826, http://dx.doi.org/10.
1145/1557019.1557109.

[55] L. Tang, H. Liu, Scalable learning of collective behavior based on sparse
social dimensions, in: Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, ACM, 2009, pp. 1107–1116, http:
//dx.doi.org/10.1145/1645953.1646094.

[56] S.A. Macskassy, F. Provost, A simple relational classifier, in: Workshop on
Multi-Relational Data Mining (MRDM-2003), 2003, p. 64.

[57] B. Li, D. Pi, Learning deep neural networks for node classification, Expert
Syst. Appl. 137 (2019) 324–334, http://dx.doi.org/10.1016/j.eswa.2019.07.
006.

http://refhub.elsevier.com/S0950-7051(21)00607-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb40
http://arxiv.org/abs/1705.08415
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/3308558.3313562
http://dx.doi.org/10.1145/3132847.3132925
http://dx.doi.org/10.1145/3132847.3132925
http://dx.doi.org/10.1145/3132847.3132925
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00607-9/sb47
http://dx.doi.org/10.1007/s10115-020-01521-9
http://www.deeplearningbook.org
https://www.tensorflow.org/
http://dx.doi.org/10.1007/s10618-010-0210-x
http://dx.doi.org/10.1007/s10618-010-0210-x
http://dx.doi.org/10.1007/s10618-010-0210-x
http://dx.doi.org/10.1145/1557019.1557109
http://dx.doi.org/10.1145/1557019.1557109
http://dx.doi.org/10.1145/1557019.1557109
http://dx.doi.org/10.1145/1645953.1646094
http://dx.doi.org/10.1145/1645953.1646094
http://dx.doi.org/10.1145/1645953.1646094
http://dx.doi.org/10.1016/j.eswa.2019.07.006
http://dx.doi.org/10.1016/j.eswa.2019.07.006
http://dx.doi.org/10.1016/j.eswa.2019.07.006

	A deep learning approach for semi-supervised community detection in Online Social Networks
	Introduction
	Related work
	Convolutional neural networks over sparse matrices
	Dimensionality issues
	SparseConv2D
	Max-pooling
	Complexity

	Architecture
	Experimental evaluation
	Experimental protocol
	Efficiency analysis
	Efficacy analysis
	Gradient descent optimizer
	Adam optimizer
	Evaluation metrics
	Classification results

	Robustness evaluation

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

