

Minimalist Parsing as a Psycholinguistic Model

Aniello De Santo

aniellodesanto.github.io aniello.desanto@utah.edu @AnyDs

> IUSS April 12, 2021

Let's Start with Data!

Asymmetries in Italian Relative Clauses

Italian speakers conform to the general cross-linguistic preference for SRC over ORC (Adani et al. 2010; Arosio et al. 2018)

(1) Il cavallo che ha inseguito i leoni The horse that has chased the lions "The horse that chased the lions"

SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
"The horse that the lions chased"

ORC

SRC > ORC

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse that has chased the lion
 - a. "The horse that chased the lion"

SRC

b. "The horse that the lion chased"

ORCp

SRC > ORCp

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse that has chased the lion
 - a. "The horse that chased the lion"

SRC

b. "The horse that the lion chased"

ORCp

SRC > ORCp

Postverbal Subjects and Ambiguity

Italian allows for postverbal subjects, making some sentences ambiguous (De Vincenzi 1991):

- (3) Il cavallo che ha inseguito il leone The horse that has chased the lion
 - a. "The horse that chased the lion"
 - b. "The horse that the lion chased"

SRC

ORCp

SRC > ORCp

Agreement can disambiguate:

(4) Il cavallo che hanno inseguito i leoni The horse that have chased the lions "The horse that the lions chased"

ORCp

Asymmetries in Italian Relative Clauses

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions

"The horse that chased the lions"

SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
"The horse that the lions chased"

ORC

(4) Il cavallo che hanno inseguito i leoni
The horse that have chased the lions
"The horse that the lions chased"

ORCp

Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)

SRC > ORC > ORCp

Forward to the Past

The relation between grammatical operations and cognitive processes?

A realistic grammar should [...] contribute to the explanation of linguistic behavior and to our larger understanding of the human faculty of language.

(Bresnan 1978: pg. 58)

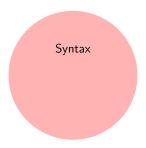
Derivational Theory of Complexity (Miller and Chomsky, 1963)

- ▶ Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)
- Essentially: there is a cost to mental computations.
- ▶ What is the right notion of syntactic derivation
- ► What is costly? And why?

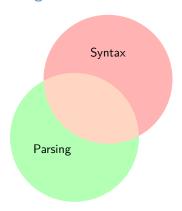
Forward to the Past

The relation between grammatical operations and cognitive processes?

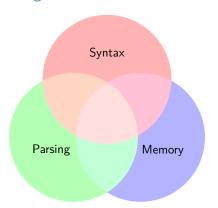
A realistic grammar should [...] contribute to the explanation of linguistic behavior and to our larger understanding of the human faculty of language.

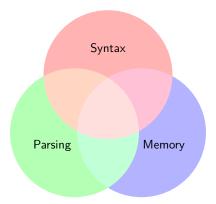

(Bresnan 1978: pg. 58)

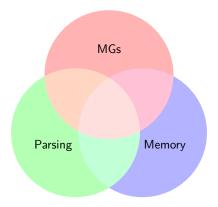
Derivational Theory of Complexity (Miller and Chomsky, 1963)

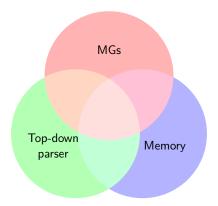

- ▶ Processing complexity ~ length of a derivation (Fodor & Garrett 1967; Berwick & Weinberg 1983)
- Essentially: there is a cost to mental computations.
- ▶ What is the right notion of syntactic derivation?
- What is costly? And why?

One Big Question


One Big Question

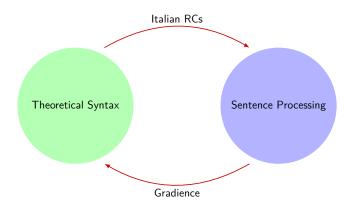



One Big Question


One Big Question

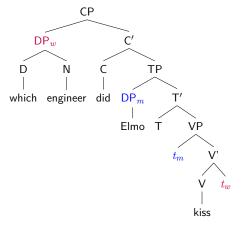
 \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)

- \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser

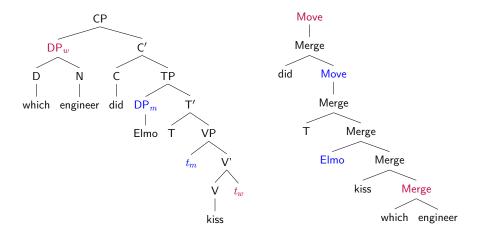


- \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser
- lacksquare A psychologically grounded linking theory o tenure

- \blacksquare An explicit syntactic theory \rightarrow Minimalist grammars (MGs)
- f 2 A theory of how structures are built o top-down parser
- lacksquare A psychologically grounded linking theory o tenure

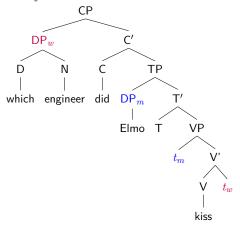

Building Bridges

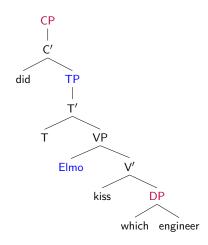
Outline


- 1 Parsing Minimalist Grammars
- 2 Case Study: Italian Postverbal Subjects
- 3 Case Study: Gradience in Island Effects (in English)
- 4 Conclusion

Minimalist Grammars (MGs) & Derivation Trees

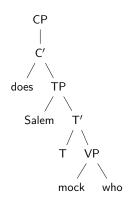
Phrase Structure Tree


Minimalist Grammars (MGs) & Derivation Trees



Phrase Structure Tree

Derivation Tree


MG Syntax: Derivation Trees

Phrase Structure Tree

Derivation Tree

Who does Salem mock?

?

CP

C'

does TP

Salem T'

T VP

mock who

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

Who does Salem mock?

?

does TP

Salem T'

T VP

mock who

► Bottom-up

Who does Salem mock?

?

does TP

Salem T'

T VP

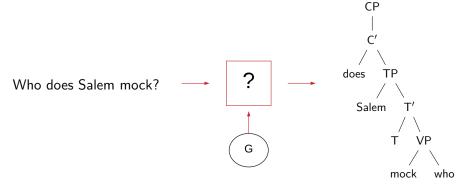
mock who

- ► Bottom-up
- ► Top-down

Who does Salem mock?

?

does TP


Salem T'

T VP

mock who

- ► Bottom-up
- ► Top-down
 - Psychologically plausible(-ish)

The Job of a Parser

- Bottom-up
- Top-down
 - Psychologically plausible(-ish)
 - ► Insight: We can build lexicalized grammars top-down!
 - Assumption: Parser as an oracle!

Top-Down Parsing: The Intuition

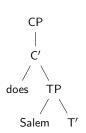
Top-Down Parsing: The Intuition

СP

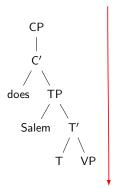
- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

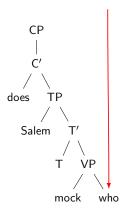
CP | C'


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition


- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Top-Down Parsing: The Intuition

- ▶ Builds the structure from top to bottom
- ► Takes elements in an out of memory
- ightharpoonup Complexity of the structure \approx how much memory is used!

Incremental Top-Down Parsing

Technical details!

```
who does Salem To mock

step 1 CP is conjectured

step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who

step 7 Who is found

step 8 does is found

step 9 Salem

step 10 T is found
```

Incremental Top-Down Parsing

Technical details!

► String-driven recursive descent parser (Stabler 2013)

¹CP

```
Who does Salem To mock
```

```
step 1 CP is conjectured
```

- step 2 CP expands to C
- tep 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- sten 11 mock is found

Incremental Top-Down Parsing

Technical details!

```
Who does Salem Tomock

step 1 CP is conjectured
step 2 CP expands to C'
step 3 C' expands to does and TP
step 4 TP expands to Salem and T'
step 5 T' expands to mock and who
step 6 VP expands to mock and who
step 7 who is found
step 8 does is found
step 9 Salem is found
step 10 T is found
```

Incremental Top-Down Parsing

Technical details!

```
who does Salem To mock

step 1 CP is conjectured

step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who

step 7 who is found

step 9 Salem is found

step 9 Salem is found

step 10 T is found

step 11 mock is found
```


Incremental Top-Down Parsing

Technical details!

```
who does Salem Tomock

step 1 CP is conjectured

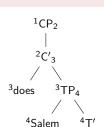
step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who


step 7 who is found

step 8 does is found

step 9 Salem is found

step 10 T is found

step 11 mock is found
```


Incremental Top-Down Parsing

Technical details!

```
who does Salem Tomock

step 1 CP is conjectured

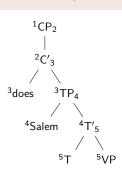
step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who


step 7 who is found

step 8 does is found

step 9 Salem found

step 10 Timock is found

step 11 mock is found
```


Incremental Top-Down Parsing

Technical details!

```
who does Salem To mock

step 1 CP is conjectured

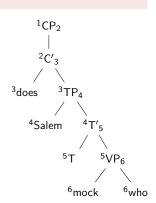
step 2 CP expands to C'

step 3 C' expands to does and TP

step 4 TP expands to Salem and T'

step 5 T' expands to T and VP

step 6 VP expands to mock and who

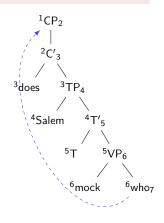

step 7 Who is found

step 8 does is found

step 9 Salem is found

step 10 T is found

step 11 mock is found
```



Incremental Top-Down Parsing

Technical details!

```
► • Who • does • Salem • T • mock
```

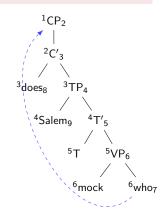
- step 1 CP is conjectured
- step 2 *CP* expands to *C'*
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 CP expands to C'
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

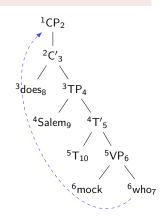


Incremental Top-Down Parsing

Technical details!

```
▶ • Who • does • Salem • T • mock
```

- step 1 CP is conjectured
- step 2 *CP* expands to *C'*
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 *mock* is found

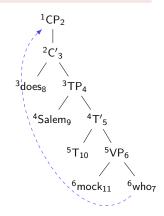

MG Parsing

Incremental Top-Down Parsing

Technical details!

```
▶ Who does Salem T • mock
```

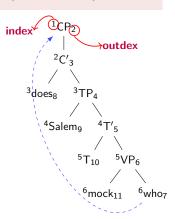
- CP is conjectured step 1
- CP expands to C'step 2
- C' expands to does and TP step 3
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- VP expands to mock and who step 6
- step 7 who is found
- step 8 does is found
- step 9 Salem is found T is found
- step 10



Incremental Top-Down Parsing

Technical details!

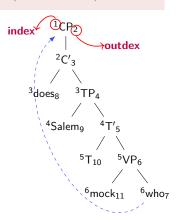
```
▶ • Who • does • Salem • T • mock
```


- step 1 CP is conjectured
- step 2 *CP* expands to *C'*
- step 3 C' expands to does and TP
- step 4 TP expands to Salem and T'
- step 5 T' expands to T and VP
- step 6 VP expands to mock and who
- step 7 who is found
- step 8 does is found
- step 9 Salem is found
- step 10 T is found
- step 11 mock is found

Incremental Top-Down Parsing

Technical details!

```
Who does Salem To mock
        CP is conjectured
 step 1
        CP expands to C'
step 2
        C' expands to does and TP
 step 3
step 4 TP expands to Salem and T'
step 5 T' expands to T and VP
        VP expands to mock and who
 step 6
 step 7
        who is found
 step 8
        does is found
        Salem is found
step 9
step 10
        T is found
        mock is found
step 11
```



Incremental Top-Down Parsing

Technical details!

► String-driven recursive descent parser (Stabler 2013)

```
Who does Salem To mock
        CP is conjectured
 step 1
        CP expands to C'
step 2
        C' expands to does and TP
 step 3
 step 4 TP expands to Salem and T'
step 5 T' expands to T and VP
 step 6 VP expands to mock and who
 step 7
        who is found
 step 8
        does is found
        Salem is found
step 9
step 10
        T is found
        mock is found
step 11
```


Index and Outdex are our connection to memory!

Memory-Based Complexity Metrics

► Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory
Size How much information is stored in a node
⇒ Intuitively, the length of its movement dependency!

Formalized into complexity metrics

 $\label{eq:max} \begin{array}{ll} \text{MaxTenure} & \max(\{\text{tenure-of}(n)|n \text{ a node of the tree}\}) \\ \\ \text{SumSize} & \sum_{m \in M} size(m) \end{array}$

John Hale

Greg Kobele

Sabrina Gerth

Memory-Based Complexity Metrics

► Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory
Size How much information is stored in a node
⇒ Intuitively, the length of its movement dependency!

Formalized into complexity metrics

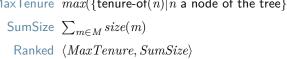
MaxTenure $max(\{\text{tenure-of}(n)|n \text{ a node of the tree}\})$ SumSize $\sum_{m \in M} size(m)$

Ranked (MaxTenure, SumSize)

Greg Kobele

Sabrina Gerth

John Hale


MG Parsing

Memory-Based Complexity Metrics

Memory usage: (Kobele et al. 2012; Gibson, 1998)

Tenure How long a node is kept in memory Size How much information is stored in a node ⇒ Intuitively, the length of its movement dependency!

Formalized into complexity metrics MaxTenure $max(\{tenure-of(n)|n \text{ a node of the tree}\})$ SumSize $\sum_{m \in M} size(m)$

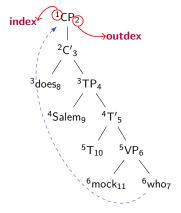
Greg Kobele

Sabrina Gerth

John Hale

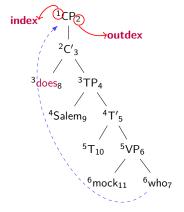
Processing Asymmetries All the Way Down

<MAXT,SUMS> makes correct predictions cross-linguistically!

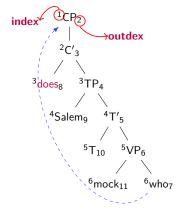

Across Many Constructions

- ► Right > center embedding (Kobele et al. 2012)
- ► Crossing > nested dependencies (Kobele et al. 2012)
- ► SC-RC > RC-SC (Graf & Marcinek 2014)
- ► SRC > ORC (Graf et al. 2017)
- ► Postverbal subjects in Italian (De Santo 2019)
- ▶ Persian attachment ambiguities (De Santo & Shafiei 2019)
- RC attachment in Mandarin, Korean, Japanese (De Santo & Lee in prep.)

Across Languages


- ► English, German, Italian
- ► Korean, Japanese, Mandarin Chinese
- Persian, ...

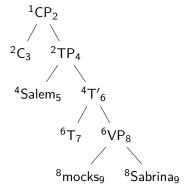
Computing Metrics: An Example


Tenure how long a node is kept in memory

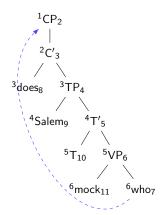
Computing Metrics: An Example

Tenure how long a node is kept in memory **Tenure**(does) = 8 - 3 = 5

Computing Metrics: An Example


Tenure how long a node is kept in memory

Tenure(
$$does$$
) = $8 - 3 = 5$


 $MaxTenure = max{Tenure(does), Tenure(Salem), ...} = 5$

Contrasting Derivations

MaxTenure = 2

MaxTenure = 5

Summary of the Approach

General Idea

(Kobele et al. 2012; Gerth 2015; Graf et al. 2017)

- Pick two competing derivations
- 2 Evaluate metrics over each
 - ► Lowest score means easiest!
- 3 Compare parser's prediction to experimental data

Reminder: Asymmetries in Italian Relative Clauses

- (1) Il cavallo che ha inseguito i leoni
 The horse that has chased the lions

 "The horse that chased the lions"

 SRC
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased
 "The horse that the lions chased"

 ORC
- (4) Il cavallo che hanno inseguito i leoni
 The horse that have chased the lions
 "The horse that the lions chased"

 ORCp

Processing Asymmetry (De Vincenzi 1991, Arosio et al. 2018, a.o.)

SRC > ORC > ORCp

Italian RCs Gradience Conclusion

Modeling Assumptions

Reminder:

- ► Parsing strategy
- \Rightarrow Top-down parser
- Complexity Metrics ⇒ MaxTenure and SumSize

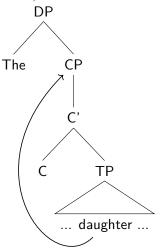
Degrees of freedom: Syntactic analyses

- **1** RC constructions \rightarrow (Kayne 1994)
- 2 Postverbal subjects → (Belletti & Leonini 2004)

Italian RCs Gradience Conclusion

Modeling Assumptions

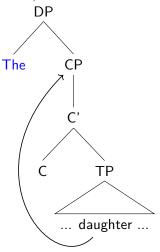
Reminder:


- ▶ Parsing strategy⇒ Top-down parser
- Complexity Metrics ⇒ MaxTenure and SumSize

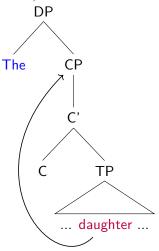
Degrees of freedom: Syntactic analyses

- **1** RC constructions \rightarrow (Kayne 1994)
- 2 Postverbal subjects → (Belletti & Leonini 2004)

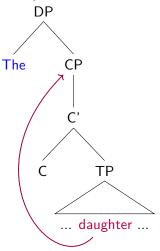
Kayne's Promotion Analysis (Kayne 1994)


- ightharpoonup RC is selected by an external D^0
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

 $[_{DP}$ The $[_{CP}$ daughter $_i$ [that t_i was on the balcony]]]

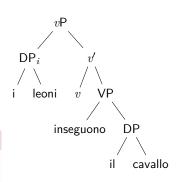

Kayne's Promotion Analysis (Kayne 1994)

- ► RC is selected by an external D⁰
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]


Kayne's Promotion Analysis (Kayne 1994)

- \triangleright RC is selected by an external D^0
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

Kayne's Promotion Analysis (Kayne 1994)


- ► RC is selected by an external D⁰
- the RC head is a nominal constituent
- the RC head raises from its base position to [Spec, CP]

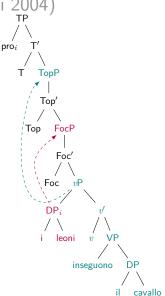
Postverbal Subjects (Belletti & Leonini 2004)

- (5) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole vP raises to Spec, TopP

Technical details!

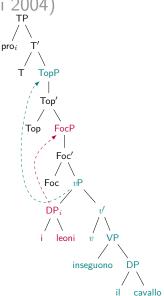
Postverbal Subjects (Belletti & Leonini 2004)

- (6) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole vP raises to Spec, TopP


Technical details!

Postverbal Subjects (Belletti & Leonini 2004)

- (7) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ightharpoonup The whole $v\mathsf{P}$ raises to Spec, TopP


Technical details!

Postverbal Subjects (Belletti & Leonini 2004)

- (7) Inseguono il cavallo i leoni Chase the horse the lions "The lions chase the horse"
- ► the subject DP raises to Spec, FocP
- ▶ The whole vP raises to Spec, TopP

Technical details!

Modeling Results

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
"The horse that chased the lions"

SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions chased
"The horse that the lions chased"

ORC

(4) Il cavallo che hanno inseguito i leoni The horse that have chased the lions "The horse that the lions chased"

ORCp

SRC > ORC > ORCp

Modeling Results

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
"The horse that chased the lions"

- SRC
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased
 "The horse that the lions chased"

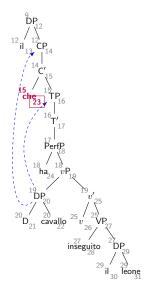
ORC

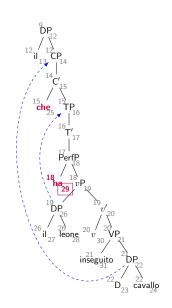
(4) Il cavallo che hanno inseguito i leoni
The horse that have chased the lions
"The horse that the lions chased"

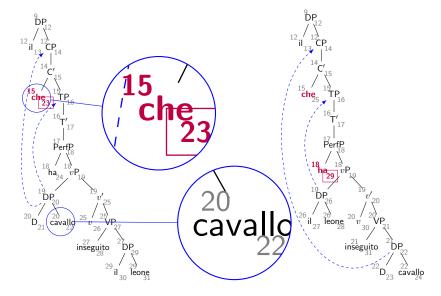
ORCp

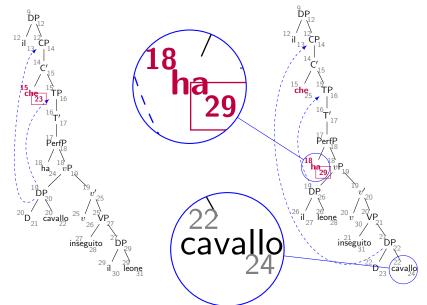
	SRC	>	ORC	>	ORCp
MaxTenure	8/che		11/ha		16/Foo
SumSize	18		24		31

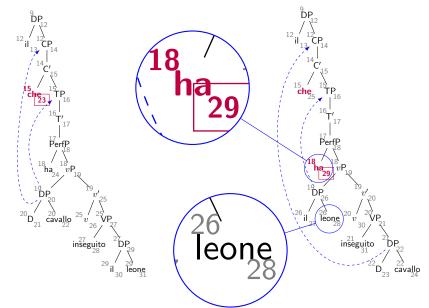
Modeling Results


- (1) Il cavallo che ha inseguito i leoni
 The horse that has chased the lions


 "The horse that chased the lions"

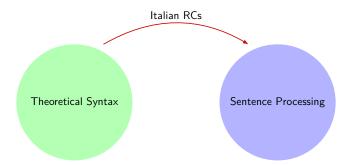

 SRC
- (2) Il cavallo che i leoni hanno inseguito
 The horse that the lions have chased
 "The horse that the lions chased"


 ORC
- (4) Il cavallo che hanno inseguito i leoni
 The horse that have chased the lions
 "The horse that the lions chased"

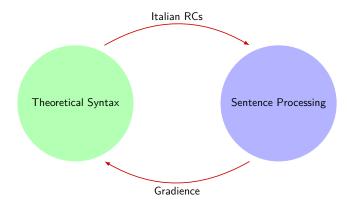

 ORCp

Summary of Results (De Santo 2019)

Clause Type	<maxtenure,sumsize></maxtenure,sumsize>
obj. SRC > ORC	✓
obj. $SRC > ORCp$	\checkmark
obj. $ORC > ORCp$	\checkmark
subj. SRC > ORC	✓
$subj.\ SRC > ORCp$	\checkmark
subj. $ORC > ORCp$	\checkmark
matrix SVO > VOS	√
$VS\ unacc > VS\ unerg$	√


Table: Predictions of the MG parser by contrast.

MG Parsing Italian RCs Gradience Conclusion


Interim Summary

- Asymmetries in Italian postverbal subject constructions
 - Derived just from (fine-grained) structural differences!
- <MAXT,SUMS> gives consistent results!
 - Right vs. center embedding, attachment ambiguities, relative clause preferences
 - English, German, Korean, Japanese, Persian, Mandarin Chinese
 - More?

Moving on

Moving on

MG Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- 1 What do you think that John bought *t*?
- 2 *What do you wonder whether John bought t?

1G Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

1G Parsing Italian RCs Gradience Conclusion

Acceptability and Grammaticality

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

One way to test the adequacy of a grammar proposed for [language] L is to determine whether or not the sequences that it generates are actually grammatical, i.e., acceptable to a native speaker.

(Chomsky 1957)

Acceptability judgments ≈ Grammaticality judgments

Gradience in Acceptability Judgments

- 1 What do you think that John bought t?
- 2 *What do you wonder whether John bought t?

Gradience in Acceptability Judgments

- What do you think that John bought t?
- *What do you wonder whether John bought t?
- Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Gradience in Acceptability Judgments

- What do you think that John bought *t*?
- *What do you wonder whether John bought t?
- **3** Who *t* thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

1G Parsing Italian RCs Gradience Conclusion

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

1G Parsing Italian RCs Gradience Conclusion

Gradient Acceptability and Categorical Grammars

Acceptability judgments are not binary but gradient:

An adequate linguistic theory will have to recognize degrees of grammaticalness [...] there is little doubt that speakers can fairly consistently order new utterances, never previously heard, with respect to their degree of belongingness to the language.

(Chomsky 1975: 131-132)

But mainstream syntactic theories rely on categorical grammars!

AG Parsing Italian RCs Gradience Conclusion

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- ► OT-style constraint ranking
- Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schütze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

MG Parsing Italian RCs Gradience Conclusion

(Quantitative) Models of Gradience

Gradient Grammars (Keller 2000; Lau et al. 2014)

- ► OT-style constraint ranking
- ► Probabilistic grammars

Extra-grammatical Factors (Chomsky 1975; Schütze 1996)

- Processing effects
 - Plausibility
 - Working memory limitations
 - But: few models for quantitative predictions!

Hypothesis

We can use the MG parser to test the relation between categorical grammar, processing difficulty, and gradience!

MG Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- 2 What do you wonder whether John bought t?
- 4 Who t wonders whether John bought a car?

Results in pairwise comparisons ideal for the MG parsers

1G Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- 2 What do you wonder whether John bought t?
- **3** Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- II GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Results in pairwise comparisons ideal for the MG parser

MG Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- What do you wonder whether John bought *t*?
- \blacksquare Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Non-Island | Embedded

Island | Embedded

Non-Island | Matrix

Island | Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- I GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Results in pairwise comparisons ideal for the MG parser

AG Parsing Italian RCs Gradience Conclusion

A Proof of Concept: Island Effects

- What do you think that John bought t?
- 2 What do you wonder whether John bought *t*?
- Who t thinks that John bought a car?
- 4 Who t wonders whether John bought a car?

Non-Island | Embedded

Island | Embedded

Non-Island | Matrix

Island | Matrix

Gradience in Islands: Sprouse et al. (2012)

A factorial design for islands effects:

- II GAP POSITION: Matrix vs. Embedded
- 2 STRUCTURE: Island vs. Non-Island (Kluender & Kutas 1993)

Results in pairwise comparisons ideal for the MG parser

IG Parsing Italian RCs Gradience Conclusion

Sprouse at al. (2012)

FOUR ISLAND TYPES

Subject islands

▶ What do you think the speech about *t* interrupted the show about global warming?

Adjunct islands

▶ What do you laugh if John leaves *t* at the office?

Complex NP islands

▶ What did you make the claim that John bought t?

Whether islands

▶ What do you wonder whether John bought *t*?

Gap Position × Structure

- 1 Matrix vs. Embedded
- 2 Island vs. Non-Island

IG Parsing Italian RCs Gradience Conclusion

Sprouse at al. (2012)

FOUR ISLAND TYPES

Subject islands

► What do you think the speech about *t* interrupted the show about global warming?

Adjunct islands

▶ What do you laugh if John leaves *t* at the office?

Complex NP islands

▶ What did you make the claim that John bought *t*?

Whether islands

▶ What do you wonder whether John bought *t*?

Gap Position × Structure

- 1 Matrix vs. Embedded
- 2 Island vs. Non-Island

Modeling Results (De Santo 2020)

Island Type	Sprouse et al. (2012)			MG Parser
	Subj. Non Isl.	>	Obj. Non Isl.	√
	Subj. Non Isl.	>	Obj. Isl.	\checkmark
Culti Islamil 1	Subj. Non Isl.	>	Subj. Isl.	✓
Subj. Island 1	Obj. Non Isl.	>	Obj. Isl.	✓
	Obj. Non Isl.	>	Subj. Isl.	\checkmark
	Obj. Isl.	>	Subj. Isl.	×
	Matrix Non Isl.	>	Emb. Non Isl.	✓
	Matrix Non Isl.	>	Matrix Isl.	✓
Subi Island 2	Matrix Non Isl.	>	Emb. Isl.	✓
Subj. Island 2	Matrix Isl.	>	Emb. Isl.	✓
	Matrix Isl.	>	Matrix Isl.	✓
	Emb. Non Isl.	>	Emb. Isl.	\checkmark
	Matrix Non Isl.	>	Emb. Non Isl.	✓
	Matrix Non Isl.	>	Matrix Isl.	\checkmark
Adj. Island	Matrix Non Isl.	>	Emb. Isl.	✓
Auj. Islaliu	Matrix Isl.	>	Emb. Isl.	✓
	Matrix Isl.	>	Matrix Isl.	✓
	Emb. Non Isl.	>	Emb. Isl.	✓
	Matrix Non Isl.	>	Emb. Non Isl.	✓
	Matrix Non Isl.	=	Matrix Isl.	✓
CNP Island	Matrix Non Isl.	>	Emb. Isl.	\checkmark
CIVE ISIANO	Matrix Isl.	>	Emb. Isl.	✓
	Matrix Isl.	>	Matrix Isl.	✓
	Emb. Non Isl.	>	Emb. Isl.	✓

Modeling Results (De Santo 2020)

Island Type	Sprouse et al. (2012)			MG Parser
	Subj. Non Isl.	>	Obj. Non Isl.	✓
	Subj. Non Isl.	>	Obj. Isl.	\checkmark
Subj. Island 1	Subj. Non Isl.	>	Subj. Isl.	\checkmark
Subj. Island 1	Obj. Non Isl.	>	Obj. Isl.	\checkmark
	Obj. Non Isl.	>	Subj. Isl.	\checkmark
	Obj. Isl.	>	Subj. Isl.	×
	Matrix Non Isl.	>	Emb. Non Isl.	✓
	Matrix Non Isl.	>	Matrix Isl.	\checkmark
Subj. Island 2	Matrix Non Isl.	>	Emb. Isl.	\checkmark
Jubj. Island 2	Matrix Isl.	>	Emb. Isl.	\checkmark
	Matrix Isl.	>	Matrix Isl.	\checkmark
	Emb. Non Isl.	>	Emb. Isl.	✓
	Matrix Non Isl.	>	Emb. Non Isl.	\checkmark
	Matrix Non Isl.	>	Matrix Isl.	\checkmark
Adj. Island	Matrix Non Isl.	>	Emb. Isl.	\checkmark
raj. Islana	Matrix Isl.	>	Emb. Isl.	\checkmark
	Matrix Isl.	>	Matrix Isl.	\checkmark
	Emb. Non Isl.	>	Emb. Isl.	✓
	Matrix Non Isl.	>	Emb. Non Isl.	✓
	Matrix Non Isl.	=	Matrix Isl.	\checkmark
CNP Island	Matrix Non Isl.	>	Emb. Isl.	\checkmark
	Matrix Isl.	>	Emb. Isl.	\checkmark
	Matrix Isl.	>	Matrix Isl.	\checkmark
	Emb. Non Isl.	>	Emb. Isl.	\checkmark

TL;DR

Success in all cases but one!

Subject Island: Case 1

- (5) a. What do you think the speech interrupted *t*?

 b. What do you think *t* interrupted the show?

 Subj | Non Island
 - c. What do you think the speech about global warming interrupted the show about *t*? Obj | Island
 - d. What do you think the speech about *t* interrupted the show about global warming?

 Subj | Island

Sprouse et al. (2012)	MG Parser	Clause Type	MaxT	SumS	
Subj. Non Isl. > Obj. Non	ı İsl. ✓	Clause Type	IVIAX I	Juilio	
Subj. Non Isl. > Obj. Isl.	\checkmark	Obj./Non Island	14/ <i>do</i>	19	
Subj. Non Isl. > Subj. Isl.	\checkmark	Subj./Non Island	11/do	14	
Obj. $ $ Non Isl. $>$ Obj. $ $ Isl.	\checkmark	Obj./Island	23/ <i>T2</i>	22	
Obj. $ $ Non Isl. $>$ Subj. $ $ Isl.	\checkmark	Subj./Island	15 ['] /do	20	
Obj. Isl. > Subj. Isl.	×	Subj./ Islana	15/40	_0	

Subject Island: Case 1

- (5) a. What do you think the speech interrupted to Obj | Non Island b. What do you think t interrupted the show?
 - c. What do you think the speech about global warming interrupted the show about *t*? Obj | Island
 - d. * What do you think the speech about *t* interrupted the show about global warming?

 Subj | Island

Sprouse	et al	l. (2012)	MG Parser	Clause Type	MaxT	SumS	
Subj. Non Isl.	>	Obj. Non Isl.	√	Clause Type	IVIAX I	Juilio	
Subj. Non Isl.	>	Obj. Isl.	✓	Obj./Non Island	14/ <i>do</i>	19	
Subj. Non Isl.	>	Subj. Isl.	✓	Subj./Non Island	11/do	14	
Obj. Non Isl.	>	Obj. Isl.	\checkmark	Obj./Island	23/ <i>T2</i>	22	
Obj. Non Isl.	>	Subj. Isl.	\checkmark	Subj./Island	15 ['] /do	20	
Obi. Isl.	>	Subi. Isl.	×	Casj., Island	20, 00	_0	

Subject Island: Case 2

(6) a. Who t thinks the speech interrupted the primetime TV show?

Matrix | Non Island

b. What do you think t interrupted the primetime TV show?

Emb. | Non Island

- c. Who t thinks the speech about global warming interrupted the primetime TV show?

 Matrix | Island
- d. What do you think the speech about t interrupted the primetime TV show?
 Emb. | Island

Sprouse	et al	. (2012)	MG Parser	Clause Type	MaxT	SumS
Matrix Non Isl.	>	Emb. Non Isl.	<u> </u>	Clause Type	IVIAAI	- Juiii 5
Matrix Non Isl.	>	Matrix Isl.	✓	Matrix Non Isl.	5/ <i>C</i>	9
Matrix Non Isl.	>	Emb. Isl.	✓	Emb. Non Isl.	11/do	14
Matrix Isl.	>	Emb. Isl.	\checkmark	Matrix Isl.	$11/T_{RC}$	9
Matrix Isl.	>	Matrix Isl.	✓	Emb. İsl.	$17/T_{RC}$	20
Emb. Non Isl.	>	Emb. Isl.	✓	LIIID. 131.	11/1RC	20

AG Parsing Italian RCs Gradience Conclusion

Summary

Gradience from a categorical MG grammar?

- ► The **first** (quantitative) model of this kind!
- ▶ Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- ► Modulate range of dependencies
- ► Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- ► Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)

AG Parsing Italian RCs Gradience Conclusion

Summary

Gradience from a categorical MG grammar?

- ► The first (quantitative) model of this kind!
- Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- ► Modulate range of dependencies
- ► Other examples of gradience
- Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- ► Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)

MG Parsing Italian RCs Gradience Conclusion

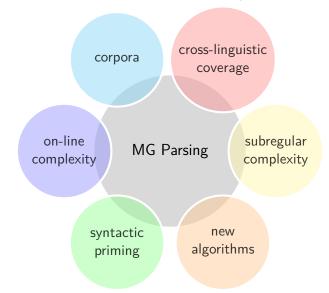
Summary

Gradience from a categorical MG grammar?

- ► The first (quantitative) model of this kind!
- Overall, a success! ⇒ just from structural differences!
- Outlier is expected assuming grammaticalized constraints.

The tip of the iceberg!

- ► Modulate range of dependencies
- ► Other examples of gradience
- ► Cognitive vs. grammatical constraints? (Ferrara-Boston 2012)
- Syntactic constraints ~ pruning the parsing space (Stabler 2013)
- ► Probing industrial-level language models (Wilcox et al. 2018; Torr et al. 2019)


1G Parsing Italian RCs Gradience **Conclusion**

From the Trees (back) to the Forest

- ► Fully specified parsing model allows for precise predictions
- ► Tight connection with current generative syntax
- ► Successful on a variety of cross-linguistic constructions
- + insights about the structure of the grammar

Looking Ahead: A Collaborative Enterprise

From the Trees (back) to the Forest [cont.]

Within the program of research proposed here, joint work by linguists, computer scientists, and psychologists could lead to a deeper scientific understanding of the role of language in cognition.

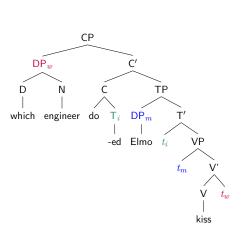
(Bresnan 1978: pg. 59)

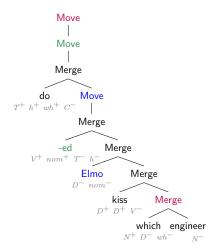
Thank you!

Selected References I

- Chomsky, N. (1995). The minimalist program. Cambridge, Mass.: MIT Press.
- De Santo, A. (2019). Testing a Minimalist gram- mar parser on Italian relative clause asymmetries. In Proceedings of CMCL 2019, June 6 2019, Minneapolis, Minnesota.
- De Santo, A. (2020). MG Parsing as a Model of Gradient Acceptability in Syntactic Islands. (To appear) In *Proceedings of SCiL 2020*, Jan 2-5, New Orleans.
- De Santo, A. and Shafiei, N. (2019). On the structure of relative clauses in Persian: Evidence from computational modeling and processing effects. *Talk at the NACIL2*, April 19-21 2019, University of Arizona.
- Graf, T. and Monette, J. and Zhang, C. (2017). Relative Clauses as a Benchmark for Minimalist Parsing. Journal of Language Modelling.
- Kobele, G.M., Gerth S., and Hale. J. (2012). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32–51. Springer.
- Sprouse, J., Wagers, M. and Phillips, C. (2012). A test of the relation between working-memory capacity and syntactic island effects. Language.
- Stabler, E.P. (2013). Bayesian, minimalist, incremental syntactic analysis. Topics in Cognitive Science 5:611–633.
- Stabler, E.P. (1997). Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retore, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.

Appendix


Why MGs?


- Vast analytical coverage
 - ▶ MGs handle virtually all analyses in the generative literature
- 2 Centrality of derivation trees
 - MGs can be viewed as CFGs with a more complicated mapping from trees to strings
- 3 Simple parsing algorithms
 - Variant of a recursive descent parser for CFGs ⇒ cf. TAG (Rambow & Joshi, 1995; Demberg, 2008)

Some Important Properties of MGs

- MGs are weakly equivalent to MCFGs and thus mildly context-sensitive. (Harkema 2001, Michaelis 2001)
- ▶ But we can decompose them into two finite-state components: (Michaelis et al. 2001, Kobele et al. 2007, Monnich 2006)
 - a regular language of well-formed derivation trees
 - an MSO-definable mapping from derivations to phrase structure trees
- ➤ Remember: Every regular tree language can be re-encoded as a CFG (with more fine-grained non-terminal labels). (Thatcher 1967)

Fully Specified Derivation Trees

Phrase Structure Tree

Derivation Tree

Technical Fertility of MGs

MGs can accommodate the full syntactic toolbox:

- sidewards movement (Stabler, 2006; Graf 2013)
- affix hopping (Graf 2012; Graf2013)
- clustering movement (Gartner & Michaelis 2010)
- tucking in (Graf 2013)
- ► ATB movement (Kobele 2008)
- copy movement (Kobele 2006)
- extraposition (Hunter &Frank 2014)
- Late Merge (Kobele 2010; Graf 2014)
- ► Agree (Kobele 2011; Graf 2011)
- adjunction (Fowlie 2013; Hunter 2015)
- ► TAG-style adjunction (Graf 2012)

Why These Metrics?

- ► These complexity metrics are all related to storage cost (cf. Gibson, 1998)
- ► We could implement alternative ones
 - (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...
- We want to keep the model simple (but not trivial)
 - ► Tenure and Size only refer to the geometry of the derivation
 - they are sensitive the specifics of tree-traversal (cf. node-count: Hale, 2001)

Why These Metrics?

- ► These complexity metrics are all related to storage cost (cf. Gibson, 1998)
- ► We could implement alternative ones
 - (cf. Ferrara-Boston, 2012)
 - number of bounding nodes / phases
 - surprisal
 - feature intervention
 - status of discourse referents
 - integration, retrieval, ...
- ► We want to keep the model simple (but not trivial):
 - ► Tenure and Size only refer to the geometry of the derivation
 - they are sensitive the specifics of tree-traversal (cf. node-count; Hale, 2001)

Italian Subjects: Probing the Results

Clause Type	MaxT	SumS
obj. SRC	8/che	18
obj. ORC	11/ha	24
obj. ORCp	16/ <i>Foc</i>	31
subj. SRC	21/v'	37
subj. ORC	21/v'	44
subj. ORCp	28/v'	56
matrix SVO	3/ha/v	7
matrix VOS	7/Top/Foc	11
VS unacc	2/ <i>v</i> P	3
VS unerg	7/Top/Foc	11

Table: Summary of MAXT (value/node) and SUMS by construction. Obj. and subj. indicate the landing site of the RC head in the matrix clause.

Postverbal Asymmetries: Possible Accounts?

SRC > ORC

▶ DLT, active-filler strategy, Competition model, ...

ORC > ORCp

- ▶ more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

SRC > ORC

▶ DLT, active-filler strategy, Competition model, ...

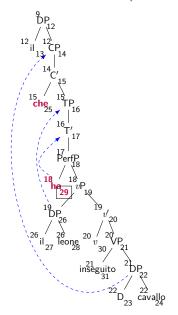
ORC > ORCp

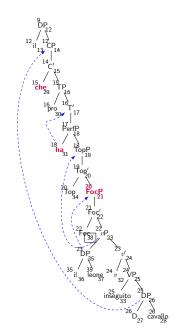
- ▶ more problematic (e.g., for DLT)
- can be explained by
 - 1 economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Postverbal Asymmetries: Possible Accounts?

SRC > ORC


▶ DLT, active-filler strategy, Competition model, ...


ORC > ORCp

- more problematic (e.g., for DLT)
- can be explained by
 - economy of gap prediction + structural re-analysis;
 - 2 intervention effects + featural Relativized Minimality

Can we give a purely structural account?

Results: ORC > ORCp

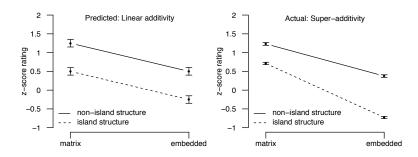
Additional Constructions

► Ambiguity in Matrix Clauses

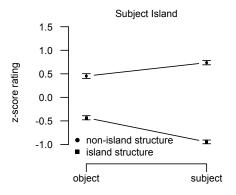
- (7) Ha chiamato Gio Has called Giovanni a. "He/she/it called Gio"
 - b. "Gio called"
- Unaccusatives vs. Unergatives
- (8) È arrivato Gio Is arrived Gio "Gio arrived"
- (9) Ha corso Gio Has ran Gio
 - "Gio ran"

SVO

VS


Unaccusative

Unergative


Gradience in Islands

A factorial design for islands effect:

► GAP POSITION × STRUCTURE

Deriving Pairwise Comparisons

- ► Subj | Non Island > Obj | Non Island
- ► Subj | Non Island > Obj | Island
- ► Subj | Non Island > Subj | Island
- etc.

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

▶ Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects *per se*

- Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

► Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ► Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

► Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ► Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - ▶ hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

A Caveat on Island Effects

The Goal

Can gradience in acceptability judgments arise from a categorical grammar due to processing factors?

▶ Sprouse et al.'s (2012) design is ideal for the MG model.

But I am not interested in island effects per se:

- ► Islands: grammatical or processing effects? (Hofmeister et al., 2012a; Sprouse et al., 2012a,b)
 - hence, not modeling super-additivity
 - spoilers: maybe we get some insights?
- ► Islands: syntax or semantics? (Truswell, 2011; Kush et al., 2018; Matchin et al., 2018)

Models of Gradience

(At least two) theories of gradience:

- ► Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- Gradience due to extra-grammatical factors (Chomsky 1975; Schütze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

Models of Gradience

(At least two) theories of gradience:

- ► Gradience incorporated in the grammar (Keller 2000; Featherston 2005; Lau et al. 2014)
- ► Gradience due to extra-grammatical factors (Chomsky 1975; Schütze 1996)

The contribution of formal models?

Quantify what each approach needs to account for the data:

- Additional syntactic assumptions
- Additional complexity in acquisition, processing strategies, etc.

Subject Islands

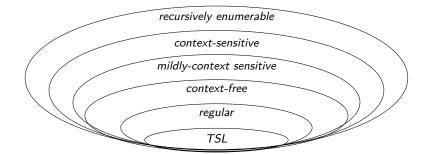
Case 1:

- (10) a. What do you think the speech interrupted t? Obj | Non Island b. What do you think t interrupted the show? Subj | Non Island
 - c. What do you think the speech about global warming
 - interrupted the show about t? Obj | Island d. What do you think the speech about t interrupted the show
 - about global warming?

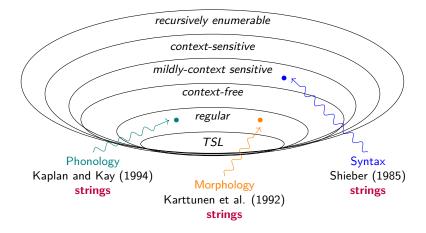
 Subj | Island

Case 2:

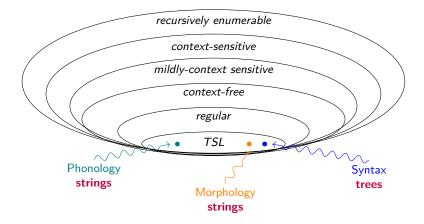
(11) a. Who t thinks the speech interrupted the primetime TV show?


 $\mathsf{Matrix} \mid \mathsf{Non} \; \mathsf{Island}$

b. What do you think *t* interrupted the primetime TV show?


Emb. | Non Island

- c. Who t thinks the speech about global warming interrupted the primetime TV show?
 Matrix | Island
- d. What do you think the speech about t interrupted the primetime TV show?
 Emb. | Island


Subregular Complexity

Subregular Complexity

Subregular Complexity

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

typology

- learnability
- cognition

Cognitive Parallelism

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates ≥ 3 TPs
- learnability
- cognition

Cognitive Parallelism

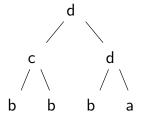
Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

We gain a unified perspective on:

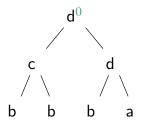
- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates > 3 TPs
- learnability
 Learnable from positive examples of strings/trees.
- cognition

Cognitive Parallelism

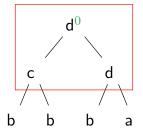

Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

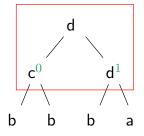
We gain a unified perspective on:


- typology
 - × Intervocalic Voicing iff applied an even times in the string
 - \times Have a CP iff it dominates ≥ 3 TPs
- learnability
 Learnable from positive examples of strings/trees.
- cognition Finite, flat memory

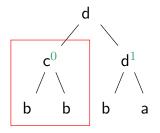
Graf & De Santo (2019)


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

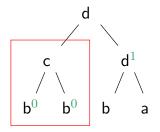
Graf & De Santo (2019)


$$ightharpoonup 0(b) o b$$
; $1(b) o b$

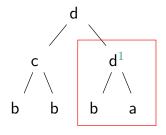
Graf & De Santo (2019)


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

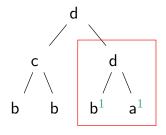
Graf & De Santo (2019)


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

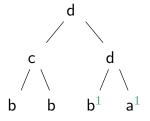
Graf & De Santo (2019)


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a) o a

Graf & De Santo (2019)


$$ightharpoonup 0(b) o b$$
; $1(b) o b$

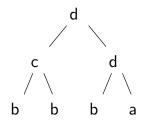
Graf & De Santo (2019)


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

Graf & De Santo (2019)

- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

Graf & De Santo (2019)

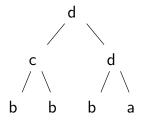


- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a) o a

Top-down Parsing + Grammaticalized Constraints?

Graf & De Santo (2019)

Sensing Tree Automata (Martens 2006) as a subregular bound on the complexity of syntactic dependencies.

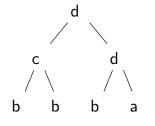


 Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)

$$0(b) \to b; \ 1(b) \to b$$

Top-down Parsing + Grammaticalized Constraints?

Graf & De Santo (2019)



- Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)
- Constraints improve parsing performance by exponentially reducing the search space (Stabler 2013)

$$0(b) \to b; \ 1(b) \to b$$

Top-down Parsing + Grammaticalized Constraints?

Graf & De Santo (2019)

- ightharpoonup 0(b) o b; 1(b) o b
- ightharpoonup 1(a)
 ightharpoonup a

- Some island constrains arise naturally from this perspective (e.g., Adjunct Island Constraint, SpIC, ATB movement)
- Constraints improve parsing performance by exponentially reducing the search space (Stabler 2013)
- Can be pre-compiled in the MG parse schema as a deterministic top-down filter (De Santo & Graf, in prep.)

Stacked RCs and Parallelism Effects

English Stacked RCs (Zhang, 2017)

- (12) The horse $[{}_{RC_1}$ that ${f t}$ chased the wolf] $[{}_{RC_2}$ that ${f t}$ kicked the elephant] ... ss
- (13) The horse $[{}_{RC_1}$ that the wolf chased ${f t}$] $[{}_{RC_2}$ that ${f t}$ kicked the elephant] ... os
- (14) The horse $[_{RC_1}$ that the wolf chased ${f t}$] $[_{RC_2}$ that the elephant kicked ${f t}$] ...oo
- (15) The horse $[_{RC_1}$ that ${f t}$ chased the wolf] $[_{RC_2}$ that the elephant kicked ${f t}$] ... so
 - Zhang (2017) found parallelism effects in stacked RC processing:
 SS < COS OO < COS OO</p>
 - ▶ But she also showed that no combination of metrics ca
 - Proposal: metric encoding memory reactivation

Stacked RCs and Parallelism Effects

English Stacked RCs (Zhang, 2017)

- (12) The horse $[RC_1]$ that t chased the wolf $[RC_2]$ that t kicked the elephant $[RC_2]$... ss
- (13) The horse $[{}_{RC_1}$ that the wolf chased ${f t}$] $[{}_{RC_2}$ that ${f t}$ kicked the elephant] ... os
- (14) The horse $[_{RC_1}$ that the wolf chased ${f t}$] $[_{RC_2}$ that the elephant kicked ${f t}$] ...oo
- (15) The horse $[_{RC_1}$ that ${f t}$ chased the wolf] $[_{RC_2}$ that the elephant kicked ${f t}$] ... so
 - Zhang (2017) found parallelism effects in stacked RC processing: SS << OS. OO << SO.</p>
 - ▶ But she also showed that no combination of metrics can account for these effects.
 - Proposal: metric encoding memory reactivation

Feature Reactivation

REACTIVATION For each node m_i associated to a movement feature f^- , its reactivation is $i(m_i) - o(m_{i-1})$; the index of m_i minus the outdex of the closest preceding node also associated to f^- , if it exists.

Assume the NPs are associated to the same movement feature f⁻

Feature Reactivation

REACTIVATION For each node m_i associated to a movement feature f^- , its reactivation is $i(m_i) - o(m_{i-1})$; the index of m_i minus the outdex of the closest preceding node also associated to f^- , if it exists.

► Assume the NPs are associated to the same movement feature *f*[−]

Feature Reactivation

REACTIVATION For each node m_i associated to a movement feature f^- , its reactivation is $i(m_i) - o(m_{i-1})$; the index of m_i minus the outdex of the closest preceding node also associated to f^- , if it exists.

Assume the NPs are associated to the same movement feature f⁻

TENURE (NP₁)
$$y-x$$

TENURE (NP₂) $z-w$
REACTIVATION(NP₂) $w-y$

Feature Reactivation: Base Metrics

feature-associated metrics

$$\begin{aligned} & \text{SUMR}^f \ \sum_{m_i \in M^f} i(m_i) - o(m_{i-1}) \\ & \text{MAXR}^f \ max(\{i(m_i) - o(m_{i-1}) | m_i \in M^f\}) \\ & \text{AVGR}^f \ \frac{\text{SUMR}}{|M^f|} \end{aligned}$$

comprehensive metrics

SUMR
$$\sum_{f \in \mathcal{M}} \text{SUMR}^f$$

MAXR $\max(\{\text{SUMR}^f | f \in \mathcal{M}\})$

AVGR $\frac{\text{SUMR}}{|\mathcal{M}|}$

Priming Effects

(16)	I saw	
	a. $\left[{}_{RC_1}$ the horse that chased the lions $ ight]$	SRC
	b. and $\left[_{RC_2}\right.$ the mouse that kissed the chicken $\left.\right]$	SRC
(17)	I saw	
	a. $[{}_{RC_1}$ The horse that chased the lions]	SRC
	b. and $\left[_{RC_2}\right.$ the mouse that the chicken kissed $\left.\right]$	ORC
(18)	I saw	
	a. $[{}_{RC_1}$ the horse that the lions chased $]$	ORC
	b. and $\left[_{RC_2}\right.$ the mouse that kissed the chicken $\left.\right]$	SRC
(19)	I saw	
	a. $[{}_{RC_1}$ the horse that the lions chased]	ORC
	b. and $\left[_{RC_2}\right.$ the mouse that the chicken kissed]	ORC