
Evaluating time series encoding techniques for
Predictive Maintenance

Title: Evaluating time series encoding techniques for Predictive Mainte-

nance

Authors: Aniello De Santo1, Antonino Ferraro2, Antonio Galli2, Vincenzo

Moscato2, Giancarlo Sperl̀ı2

Affiliation: 1 Department of Linguistics of the University of Utah (Salt Lake

City, UT 84112, USA) 2 Department of Electrical Engineering and Information

Technology (DIETI), University of Naples ”Federico II”, Via Claudio 21, Naples,

Italy

Email: aniello.desanto@utah.edu,antonino.ferraro@unina.it, antonio.galli@unina.it,

vincenzo.moscato@unina.it, giancarlo.sperli@unina.it

Corresponding Author Giancarlo Sperl̀ı, Department of Electrical Engi-

neering and Information Technology (DIETI), University of Naples ”Federico

II”, Via Claudio 21, Naples, Italy (email: giancarlo.sperli@unina.it Phone:

(+39) 081-76883606).

Preprint submitted to Expert Systems with Applications November 26, 2022



Evaluating time series encoding techniques for
Predictive MaintenanceEvaluating time series encoding

techniques for Predictive Maintenance

Abstract

Predictive Maintenance has become an important component in modern indus-

trial scenarios, as a way to minimize down-times and fault rate for different

equipment. In this sense, while machine learning and deep learning approaches

are promising due to their accurate predictive abilities, their data-heavy require-

ments make them significantly limited in real world applications. Since one of

the main issues to overcome is lack of consistent training data, recent work has

explored the possibility of adapting well-known deep-learning models for image

recognition, by exploiting techniques to encode time series as images. In this

paper, we propose a framework for evaluating some of the best known time

series encoding techniques, together with Convolutional Neural Network -based

image classifiers applied to predictive maintenance tasks. We conduct an exten-

sive empirical evaluation of these approaches for the failure prediction task on

two real-world datasets (PAKDD2020 Alibaba AI OPS Competition and NASA

bearings), also comparing their performances with respect to the state-of-the-

art approaches. We further discuss advantages and limitation of the exploited

models when coupled with proper data augmentation techniques.

Keywords: Predictive maintenance, Time series Encoding techniques, Failure

Prediction, Deep Learning

1. Introduction

Fast changes to the landscape of digital technologies have been significantly

transforming industrial processes, due to the deep integration between physical
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and digital systems of production environments. Nowadays, it is possible to

collect vast amounts of data about the way different equipment operates while,5

at the same time, allowing for targeted exchanges of information among people,

products, and machines.

The increasing transformative speed of technical innovations has led some

experts to label this new phase of development the “Fourth Industrial Revolu-

tion” (or Industry 4.0 ) — associating it to high-connectivity, the availability of10

rich data sources, and of technologies able to explore the high dimensionality of

such sources due to increase in power and storage capacity (Schwab (2017)). For

instance, the variety of events occurring at every moment along an industrial

production line can now be analyzed in real-time, correlating real-time data to

past events to detect and prevent possible structural failures, thus avoiding long15

down-times.

More in general, rich, high-dimensional real-time data can bring out valuable

insights about the internal dynamics of complex industrial systems. In this

sense, the application of data analytic techniques to the industrial pipe-line

has shown incredible potential towards a variety of domains: maintenance cost20

reduction, machine fault reduction, repair stop reduction, spare parts inventory

reduction, increased spare part life, increased overall production, improvement

in operator safety, repair verification, overall profit, just to name a few (Zhang

et al. (2019a); Alizadeh & Ma (2021)). Notably, most of these issues are tied to

the timely deployment of efficient and effective maintenance procedures.25

A first field of interest is surely represented by the condition monitoring and

diagnostics of mechanical components within Avionic or Automotive industries

such as gearboxes, ball bearings, and rotating shafts Souza et al. (2021). A

sudden break in production line has costs of missing product that abundantly

exceed the costs of the component itself. Another interesting domain of applica-30

tion in which maintenance procedures are also crucial is Information technology

(IT) Infrastructures management, and in particular for hard disk failures predic-

tion within large-scale data centers. Hard disk disruptions in this kind of data

centers directly affect the reliability of the entire infrastructure, thus negatively
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impacting the business Service Level Agreement (Su & Huang (2018)).35

To address these issues, Predictive Maintenance techniques have become

essential in guaranteeing strong business improvements, exploiting the tech-

nological changes of Industry 4.0 to minimize down-times and fault rate for

different equipment in heterogeneous contexts (Zonta et al. (2020a); Carvalho

et al. (2019); Cañas et al. (2021); Geng & Wang (2022); Nakagawa et al. (2021)).40

As in many other areas concerned with huge amount of complex data, ap-

proaches exploiting machine learning and deep learning tools appear to be most

promising among the diverse array of modern predictive maintenance techniques

(Carvalho et al. (2019); Ran et al. (2019); Rieger et al. (2019)). Such ap-

proaches usually leverage historical datasets, structured as labeled time series45

about equipment operations, to train a variety of regression/classification mod-

els which can then be used to predict possible failures in terms of Remaining

Useful Life (RUL) estimation. It follows immediately that the performance

of such approaches is fundamentally tied to the availability of extensive and

reliable training data.50

Since this is not always the case in real world scenarios, deep learning models

have gained attention as a way to overcome potential imitations due to missing

of data (Dalzochio et al. (2020a)). Given that the majority of reliable deep

learning architectures were developed with a focus on image analysis, the last

few years have seen a rise in studies aiming to encode time series as images, and55

re-frame RUL as an image classification task (Krishna & Kalluri (2019)).

In this paper, we propose a framework for evaluating the performance on

predictive maintenance tasks of some of the most diffused time series encoding

techniques (i.e., Recurrence Plot, Gramian Angular Field, Markovian Transi-

tion Filed, Wavelet Transform) together with image classifiers based on Convo-60

lutional Neural Networks (CNNs). The CNN models are then compared with

three benchmarking deep learning models on the PAKDD2020 Alibaba AI Ops

Competition — which provides data on hard disk status within a data center —

and other two state-of-the-art models on the NASA bearing datasets — that is

composed by vibration signal of bearing. In particular, the experimental eval-65
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uation underlines that the use of CNN, whose input is generetad by enconding

techniques, achieves high effectiveness performances with respect to the major-

ity of the state-of-the-art models, also being the best model in terms of Memory

Occupation parameter. We discuss the advantage of proper data augmentation

processes, also based on Generative Adversarial Network (GAN), and show re-70

sults highlighting the advantages and disadvantages of different modelling and

training choices. In particular, we show that while using a GAN helps in

the training process by providing a slight increase in performance, this small

advantage has to be balanced with heavier demands on training time and mem-

ory resources. To the best of our knowledge, the present work is one of the75

first studies reporting a complete, systematic benchmark of a variety of vastly

used time series encoding techniques as valid models for predictive maintenance

tasks.

Summarizing, the main novelties of the proposed approach concern:

• the design of a general framework for evaluating the performance for pre-80

dictive maintenance tasks of some of the most diffused time series encoding

techniques;

• the use of two different CNN-based models for equipment failure predic-

tion, whose input is generated by different encoding techniques;

• the comparison of the encoding-based techniques with respect to differ-85

ent state-of-the-art approaches on two real-world dataset (PAKDD2020

Alibaba AI Ops Competition and NASA bearing);

• a performance analysis adopting GANs as data augmentation strategy.

The paper is organized as follows. Section 2 surveys related work on predic-

tive maintenance techniques, focusing on recent machine approaches. Section 390

provides a theoretical background on time series encoding techniques. Sections

4 and 5 describe in detail the definition of a predictive maintenance task, and

of the evaluation framework adopted in this paper. Section 6 reports on the
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experiments we conducted to evaluate the different encoding techniques intro-

duced throughout the paper. Finally, Section 8 concludes with a summary of95

the results and discussion of potential future work.

2. Related Work

Scheduling maintenance decisions is a critical task to avoid unexpected shut-

downs of mechanical equipment with the aim to increase their reliability Ran

et al. (2019). For this reason, predictive maintenance has increasingly played a100

key role in Industry to jointly improve equipment’s efficiency and reduce operat-

ing costs by using machine learning models, analyzing large amount of their op-

erational data (see Ran et al. (2019); Zhang et al. (2019b); Zonta et al. (2020a);

Dalzochio et al. (2020b) for more details).

Clearly, while predictive maintenance remains a challenging task in the do-105

main of machine health status in general (Dalzochio et al. (2020b); Zonta et al.

(2020b); Fink et al. (2020)), advances in “Artificial Intelligence” models have

been crucial in improving the reliability of predictive approaches to failure de-

tection (Solomon et al. (2022); Serradilla et al. (2022); Giordano et al. (2022)).

Notoriously, deep learning techniques rely heavily on labelled datasets, incorpo-110

rating information about equipment operation trajectories (usually encoded as

time series), to train models then used to estimate RUL (we refer the reader to

(Carvalho et al. (2019); Ran et al. (2019); Rieger et al. (2019); Schwendemann

et al. (2021)) for recent surveys of machine learning approaches to predictive

maintenance). Just to mention a few recent results in this sense, Zhang et al.115

(2018a) successfully exploit an autoregressive model (together with a regularized

particle-filter algorithm, AR-RPF) to predict the RUL of lithium-ion batteries.

Similarly, a least squares support vector machine (SVM) model has been used

for fault detection and diagnosis of chillers (Han et al. (2019)). Other approaches

have been further proposed to predict RUL of bearings, the most common me-120

chanical components used in different equipment that deteriorates over time due

to the harsh working conditions, with the aim to reduce costly unplanned main-
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tenance and increasing machine reliability, availability, and safety (Wang et al.

(2018); Liu & Zhang (2020)). First approaches (Siegel et al. (2012); Loutas et al.

(2013)) mainly relied on regression strategies for predicting Remaining Useful125

Life (RUL) of bearings. In particular, the former perform a classical machine

learning pipeline, composed by feature extraction, selection and regression-based

prediction method, while the latter uses a wavelet transform to extract statisti-

cal features from time, frequency and time-scale domain, that are fed as input to

a Support Vector Regression (SVR). Other approaches (Liu et al. (2021a); Qin130

et al. (2021)) are mainly focused on deep learning models for RUL estimation

on the basis on vibration signals of bearings. Other approaches (Anantharaman

et al. (2018); Basak et al. (2019); Lima et al. (2018); De Santo et al. (2020))

aimed to exploit the fine-granularity of information offered by S.M.A.R.T. at-

tributes for predicting Hard Disk Drive (HDD) RUL. Anantharaman et al.135

(2018) evaluate two different models — Random Forest and Long-Short Term

Memory (LSTM) networks — on the task of predicting predict RUL, crucially

characterized as a multi-classification task. A similar comparative approach is

taken by Lima et al. (2018), who contrast LSTM and CNN models on a failure

prediction task. In (Basak et al. (2019)), the authors propose a feature selec-140

tion strategy based on correlation values, that are successively used to train

an LSTM network to predict disk failure within a ten day window. Some-

what relatedly, De Santo et al. (2020) experiment with a LSTM-based model

that combines S.M.A.R.T. attributes and temporal analysis for predicting HDD

health status 45 days before failure.145

Chen et al. (2021b) developed a LSTM model based on attention mechanism

to predict machine’s RUL prediction learning sequential features from raw sen-

sory data. A further deep learning-based method using attention mechanism has

been proposed by Song et al. (2021) for RUL prediction analyzing data from dif-

ferent industrial sensors. Ragab et al. (2021) proposed another attention-based150

mechanism, called ATS2S, whose aim is to jointly optimize reconstruction and

RUL prediction loss to minimize estimation error.

The performance of such methodologies is obviously strongly correlated with
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the availability of extensive, consistent, and reliable training data. As shown

in Zhao et al. (2021), estimation of equipment’s RUL strongly depends on the155

extraction method of performance degradation features. Because data might

often been missing in real world scenarios, some past work has investigated the

possibility of adopting deep learning models (Dalzochio et al. (2020a)). Given

that extensive work on deep learning models has taken place in the domain of

image analysis, recent work has experimented with encoding time series in the160

form of images. Deep networks can then be applied to remaining life estimation,

now recast as a special instance of a more general image classification task

(Guillaume et al. (2020)).

In this sense, a variety of techniques have been developed in order to encode

the temporal correlation of different features as images, that can be used for165

training well-known deep learning architectures in support of a diverse array of

applications. Four of these encoding methods seem to be particularly prominent

in the literature.

First of all, some approaches have exploited the Gramian Angular Field en-

coding method, to transform one-dimensional time series data into images, then170

fed as training to a Convolutional LSTM applied to Solar Irradiation Forecast-

ing (Hong et al. (2020)), visual deep learning models for knowledge distillation

(Liu et al. (2021b)) or activity recognition (Qin et al. (2020)), or even financial

forecasting (Barra et al. (2020)). In (Kiangala & Wang (2020), the authors de-

signed a further CNN-based model, whose input is generated by GAF method,175

for predictive maintenance about Conveyor Motors in an Industry 4.0 environ-

ment.

Among the few attempts in this direction, (Ferraro et al. (2020)) proposed

an approach to predictive maintenance by encoding sequences of S.M.A.R.T.

attributes over time through a Gramian Angular Field (GAF) to generate images180

for training a CNN. Furthermore, GAF-based methodologies has been applied to

generate input to be fed as input to a CNN-based model for predicting electricity

consumption (Chan et al. (2019)) and stock market prediction (Chen et al.

(2021a)) based on multivariate time series data.
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Other approaches have used a Discrete Wavelet Transform (DWT). For in-185

stance, DWT has been used over time series in order to generate the input of

a CNN and identify fault conditions of gearboxes (Chen et al. (2019); Liang

et al. (2019)). It has also been combined with a 1-dimensional hexadecimal

local pattern technique for arrhythmia detection based on ECG signals (Tuncer

et al. (2019)). Furthermore, a two-stage predictive algorithm based on DWT190

and Echo State Network (ESN) has been implemented by (Gao et al. (2021))

for time series forecasting.

Another popular method found in the literature is the Markov Transition

Field (MTF). For instance, (Bugueño et al. (2021)) leverage it to encode raw

signals in 2-D images. In that paper, light curves are encoded as 2-D images via195

the MFT, and used as input to a CNN in order to classify candidate transients.

Similarly, (Vandith Sreenivas et al. (2021)) use this method to generate 2-D

images from ECG signals for Arrhythmia classification. Other approaches based

on MTF encoding methods and CNN has been designed by (Fahim et al. (2020))

and (Zhang et al. (2018b)) aiming to identify anomalous energy consumption200

and online fraud, respectively.

Instead, the work of Yang et al. (2020), proposed a framework to perform

sensor classification using multivariate sensor time series data as input, encoded

through two types of encoding, GAF and MTF, to perform classification with

a CNN.205

Finally, the Recurrent Plot method has been used to encode data from 3-

axis accelerometer as images and train a CNN model for human activity recog-

nition (Lu & Tong (2019a)). A similar approach has been used to analyze

handwriting dynamics signals for the diagnosis of Parkinson’s disease (Afonso

et al. (2019)). (Zhang et al. (2021)) designed an Inception Architectural Net-210

works whose input are encoded multi-scale time series through RP method to

deal with classification tasks.

Table 1 provides summary of recent state-of-the-art contributions, using the

different encoding methods discussed so far. It is important to observe that the

majority of these techniques rely on a one-dimensional time series analysis and215

9



CNN-based models.

While past work seems to show that these encoding approaches have been

successful applied across to time series a variety of application domains (see Ta-

ble 1) — from activity recognition to disease identification — there seems to be

a gap in the literature in terms of applying them to the task of equipment failure220

prediction, and in particular to HDD and bearing health status prediction, which

constitute the mos diffused and studied case studies for predictive maintenance.

In particular, our aim is to investigate the use of encoding strategies to deal

with predictive maintenance task in order to decrease the required resource in

terms of memory and training time while achieving effectiveness performance at225

least similar to the state-of-the-art approaches. Therefore, the basic idea is to

encode time-series to leverage the last advances in supervised learningSuaboot

et al. (2020); Sundararajan & Woodard (2018) for unveiling local patterns that

would otherwise be spread over time. As it is easy to note in Table 1, the

proposed methodology aims to investigate multidimensional time-series, which230

are typically generated in industrial settings, by different encoding techniques

while the majority of the proposed approaches are based on the analysis of

one-dimensional signals, mainly using only one type of encoding strategies.

In the rest of the paper, we outline a framework for evaluating the four time

series encoding techniques discussed here over predictive maintenance tasks,235

coupling them with CNN-based image classifiers. We focus our evaluation on

the Alibaba and NASA bearing datasets, and compare the performance of the

CNN models to a few alternative machine learning architectures.

3. Background

This section provides some mathematical background on the four main en-240

coding techniques evaluated in this paper — namely, Recurrence Plot, Gramian

Angular Field, Markovian Transition Field, and Wawelet Transform — in order

to highlight the fundamental formal differences at the core of these approaches.
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Paper Model Time Series Encoding Application

Hong et al. (2020) Convolutional LSTM One-dimensional GAF Solar Irradiation Forecasting

Liu et al. (2021b) CNN One-dimensional GAF Knowledge distillation

Qin et al. (2020) CNN One-dimensional GAF Activity Recognition

Barra et al. (2020) CNN One-dimensional GAF Financial forecasting

Kiangala & Wang (2020) CNN One-dimensional GAF Conveyor Motor maintenance

Ferraro et al. (2020) CNN Multi-dimensional GAF Hard drives health status

Yang et al. (2020) CNN Multi-dimensional GAF, MTF Sensor classification

Chan et al. (2019) CNN+SVM Multi-dimensional GAF Electricity consumption forecasting

Chen et al. (2021a) CNN Multi-dimensional GAF Stock Market Forecasting

Chen et al. (2019) CNN One-dimensional DWT Gearboxes fault diagnosis

Liang et al. (2019) CNN One-dimensional DWT Gearboxes fault diagnosis

Gao et al. (2021) ESN One-dimensional DWT Time-series forecasting

Tuncer et al. (2019) NCA+1NN classifier One-dimensional DWT Arrhythmia detection

Bugueño et al. (2021) CNN One-dimensional MTF Light curves classification

Vandith Sreenivas et al. (2021) CNN One-dimensional MTF Arrhythmia classification

Fahim et al. (2020) CNN One-dimensional MTF Anomalous energy consumption

Zhang et al. (2018b) CNN One-dimensional MTF Online Fraud Detection

Lu & Tong (2019a) CNN Multi-dimensional RP Activity Recognition

Afonso et al. (2019) CNN Multi-dimensional RP Disease identification

Zhang et al. (2021) CNN One-dimensional RP Classification task

Table 1: State-of-the art approaches classified on the basis of the neural network model

adopted, the encoding method, and their application domain. Encoding methods are:

Gramian Angular Field (GAF), Recurrence Plot (RP), Markovian Transition Field (MTF),

and Wavelet Transform (WT). NCA and 1NN stand respectively for Neighborhood Compo-

nent Analysis and 1-Nearest Neighborhood.
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3.1. Recurrence Plot

A Recurrence Plot ((RP; Eckmann et al., 1995; Marwan et al., 2007)) is a245

visualization tool to explore an m-dimensional phase space trajectory through

a 2-dimensional representation of its recurrences. The core idea is to reveal in

which points some trajectories return to a previous state. Mathematically, this

concept can be formulated as:

Ri,j = θ(ε− ||~si − ~sj ||), ~s(.) ∈ Rm, i, j = 1, ...,K (1)

where K is the number of states ~s, ε is a threshold distance, ||.|| is the norm and250

θ is the Heaviside function. As a result R is a matrix. Fading to the upper left

and lower right corners represents a trend, while vertical and horizontal lines

indicate that some states do not change or change slowly.

3.2. Gramian Angular Field

A Gramian Angular Field ((GAF; Wang & Oates, 2015)) encoding produces255

an image representing a time series in a polar coordinate system rather than

the typical Cartesian coordinates. Let Y = {y1, y2, . . . , yn} be a time series

having observation values scaled within the [−1, 1] interval. Then, the scaled

time series is represented in polar coordinates by encoding each value as the

angular cosine, and the time stamp as the radius using the equation below:260

φ = arccos(x̃i) − 1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r = ti
N ti ∈ N

(2)

where ti is the time stamp and N is a constant factor to regularize the span of

the polar coordinate system. This transformation has three core properties: i)

it is bijective with rescaled [0, 1] time series data and it produces one and only

map; ii) it is surjective with rescaled [−1, 1] data and it produces one map, as

the inverse image is not unique because of the ambiguity of cos(φ) when φ is265

in [0, 2π]; iii) unlike Cartesian coordinates, polar coordinates preserve absolute

temporal relations. A GAF provides a different information granularity for
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classification tasks. After transforming the time series into polar coordinates,

a GAF constructs a map by calculating the trigonometric sum (GASF), or the

difference (GADF), between each point. GASF and GADF are calculated as270

follows:

GASF = cos(φi + φj)

GADF = sin(φi − φj)
(3)

The GAF is defined as follow:

G =


cos(φ1 + φ1) · · · cos(φ1 + φn)

cos(φ2 + φ1) · · · cos(φ2 + φn)
...

. . .
...

cos(φn + φ1) · · · cos(φn + φn)

 (4)

As mentioned, the use of this encoding preserves temporal dependence and

temporal correlations.

3.3. Markovian Transition Field275

In a Markovian Transition Field ((MTF; Wang & Oates, 2015)), the encoding

starts with a time series X and identifies its Q quartile bins by assigning to

each xi its corresponding bin qj (j ∈ [1, Q]). After that, the adjacency matrix

W = Q × Q is constructed, where each element wi,j represents the frequency

with which a point in qj is followed by a point in qi. W is called the Markov280

transition matrix. Importantly, this step potentially leads to a loss of temporal

information. In order to overcome this issue, the matrix is distributed. An MTF

is thus defined as: 
wij|x1∈qi,x1∈qj ... wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj ... wij|x2∈qi,xn∈qj

... ... ...

wij|xn∈qi,x1∈qj ... wij|xn∈qi,xn∈qj


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where each element wi,j represents the transition probability from quantile qi285

to quantile qj and the main diagonal is the special case of the self-transition

probability from each quantile to itself. The sum of the elements of a row must

have a value equal to 1. Like the GAF, the MTF is surjective and, starting from

a time series X and fixing quantile bins Q, produces a single map. Note that

the inverse image of the MTF is not unique.290

3.4. Wavelet Transform

The Wavelet Transform ((WT; Akansu et al., 2001; Addison, 2005, a.o.))

is an alternative to the more classic Fourier transform, decomposing a function

into a set of wavelets. It provides high resolution in both the time and frequency

domains, and it is thus suitable for analysing dynamic signals. An important295

property is that a wavelet exists for a finite duration.

There are two types of WT:

• Discrete Wavelet Transform (DWT): The frequencies of the original

signals are decomposed into approximate coefficients and detail coefficients

(also called wavelet coefficients). Detail coefficients with larger amplitudes300

are considered significant, while those with smaller amplitudes are noise.

A DWT used in combination with threshold denoising is a low-pass filter:

it removes high-frequency noise and it is suitable for removing transient

signals.

• Continuous Wavelet Transform (CWT): It is based on the mother

wavelet. One type of application requires a different mother, because each

of them has a characteristic frequency band. The equivalent frequency is

defined as:

Feq =
Cf

sδt
(5)

where Cf represents the center frequency, s is the wavelet scale and δt305

is the sampling interval. The output of a CWT are coefficients that are

function of scale, frequency and time: the higher the number of scales

considered, the finer is the scale discretization.
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The DWT is often used for denoising and compression of signals because it

can represent them with few coefficients. The CWT is instead often used in310

time-frequency analysis and filtering of time-localised frequency components.

4. Task definition

Having put some formal preliminaries in place, we can now turn to the

definition of the most essential component of this paper: the evaluation task.

This task concerns failure detection for an equipment, in order to jointly increase315

their RUL and optimize maintenance operations.

Definition 1. Let (T Si)i∈ZN
be a set of N time series concerning different

physical attributes of the considered equipment EQ, the predictive task can be

seen as a function aiming to assess the health status y = f((T Si)i∈ZN
) ∈ [0, 1]

of EQ within a time interval [ts, tf ], where ts and tf are, respectively, the initial320

and final instants of analysis.

Figure 1: Task definition - This task concerns the analysis of n time series, representing

equipment behavior over time. These time series are investigated by the pre-processing stage

in order to extract the main features to fed as input to the classification module for predicting

the health state of an equipment.
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Figure 1 illustrates the behaviour of the prediction system in regard to the

equipment health status over a set observation window. Once an equipment

status and an observation window are defined, several traditional classification

scenarios can occur: if an equipment does not fail (or does fail, but outside325

of the prediction window) even though it was predicted to do so, it is a False

Positive; if a failure occurs without being predicted, it is a False Negative; if

an equipment fails within the observation window predicted by the model, it is

True Positive.

Remember, then, that we are interested in analyzing equipment attributes330

over time, since taking temporal trends into account should improve overall per-

formance in the prediction phase. Thus, as mentioned multiple times before, we

compare CNN models trained over multivariate time series TS = {ts1, · · · , tsn}

encoded a set of feature maps F = {f1, · · · , fm}, computed via four different

image encoding methods — Recurrence Plots, Gramian Angular Field, Marko-335

vian Transition Field and Wavelet Transform. The goal of the trained models

is to predict equipment failures based on the extracted features.

5. Framework

An overview of our training and evaluation framework is shown in Figure 2.

The aim is to provide a benchmark of different techniques for encoding time-340

series into in images, focusing on performance over an equipment failure predic-

tion task.

Figure 2: Architectural overview of the proposed framework , that is composed by different

phases. The initial step is devoted to pre-processing and feature engineering, the second step

is to create the time series sequences and convert them into images, choosing the technique

to be used in the encoding module.
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First, we conduct a series of pre-processing and feature engineering opera-

tions on the dataset. These consist of eliminating attributes with missing values,

or columns that do not affect equipment failure prediction (e.g. its capacity or345

manufacture), causing a reduction of the overall number of features. We also

apply a series of rebalancing and feature transformation techniques, through a

variety of different methodologies (see Section 6.1.2). In a second phase, we

build time-series sequences and feed them to one of the image encoding tech-

niques described in Section 3, thus producing the input to the subsequent CNN350

for the time-window under consideration. We then train two types of CNN

models to deal with the predictive maintenance task. Additionally, we specifi-

cally investigate whether using a Generative Adversarial Network (GAN) affects

overall performance.

5.1. CNN-based Classifiers355

The time series naturally extracted from the dataset can be of different

length, so it is first necessary to generate time series sequences based on fixed

time windows (40 steps). These can then be fed to one of the encoding tech-

niques discussed in Section 6.1.2, in order to generate image encodings that can

be used as input to a CNN model. We consider two alternative CNNs.360

A first model is composed of three convolutional layers with leaky ReLU as

the activation function, each followed by a max pooling layer with filter size

and, on top, a fully connected layer and softmax activation (Model 1; Figure 3).

Secondly, we consider a CNN based on the VGG-16 architecture (Simonyan

& Zisserman (2014)), a pre-trained model that takes in input (224, 224) RGB365

images. It consists of 2 convolutional layers, with 64 and 128 filters respectively,

followed by the max pooling layer. A third block has 3 convolutional layers, with

256 filters and a max pooling layer. At the top of this architecture, there are two

fully connected layers, each with 2048 neurons, and softmax activation (VGG-

like; Figure 4). The choice of a shallower CNN allows us to better deal with370

smaller inputs (40× 40).
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Figure 3: First CNN architecture Figure 4: VGG-like architecture
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Finally, we choose the log-loss (also called cross-entropy loss) loss func-

tion, which returns a probability between 0 and 1 for the two classes of the task

according to equation 6.

Li = −(y · log(p) + (1− y) · log(1− p)) (6)

where y is the correct label, p is the probability for the correct label and Li rep-375

resents the loss for the i-th element that classifier is predicting. Furthermore, we

adopt the Adam optimizer (Kingma & Ba (2015)), since it guarantees smoother

gradient descent, avoiding local optima. The Adam optimizer introduces two

additional parameters, called the first and second moment: the former is a ve-

locity term, representing a combination of its history and the current value;380

while the latter is an energy term of recent movements.

6. Experiments

With all the technical infrastructure in place, we can finally focus on the

core of the evaluation task. We evaluate performance of different methodologies

with the goal of maximizing effectiveness, thus reducing false positives and false385

negatives as much as possible, and efficiency. Therefore, we evaluate different

combinations of encoding methods and architectures on efficacy, as character-

ized by the metrics described in Section 6.2, and efficiency measured in terms

of each model’s memory usage and training time.

6.1. Experimental protocol390

As a base for evaluation, we chose two different datasets for investigating the

use of encoding methods in different industrial applications. Since both datasets

are related to a challenge, we selected the approaches that yielded the highest

effectiveness values.

The HDD dataset released by Alibaba in the PAKDD 2020 AIOps Competi-395

tion1. After a pre-processing and feature engineering phase (see Section 6.1.2),

the dataset size is reduced to about 420 MB, corresponding to more than 150, 000
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Parameters Values

Windows size (1,3,5,7,10,15,20,30)

Epoch [20 - 300]

Learning Rate 0.1,0.01,0.001

% Fake 25%,30%

% GAN module Yes,No

Table 2: Hyper-parameters optimization phase.

tensors of size 40× 76, where 40 and 76 are, respectively, the window’s size and

the number of features. In particular, we increased the number of features

by adding to raw S.M.A.R.T. attributes some of the generated ones computed400

on the basis of five methods (Raw, Normalized, Shift, Absolute and Relative),

whose description has been provided in Section 6.1.2. The dataset was divided

so that 60% of it was used as the training set, 20% as the validation set, and

20% as the testing set. The number of healthy and failed disks was balanced as

described in Section 6.1.2.405

In turn, the NASA Bearing dataset2 is made up of 19, 680, 000, divided

into 984 files containing 20K samples After the pre-processing phase (see Sec-

tion 6.1.2), we applied a window, having size equal to five, to each file for

generating encoded images. Therefore, downstream of this elaboration process

we will have a total of 984 images that portray the state of health of the bearing410

at a precise moment during its operation. The dataset has been divided into 3

parts by using Stratified approach: 60% and 30% for training and test set and

10% for evaluating the generalization error.

6.1.1. Dataset

As briefly mentioned before, predictive maintenance of equipment’s health415

status is crucial in large-scale industrial infrastructures, since equipment failure

can significantly affect the reliability of infrastructure as a whole. Thus, we

focus our evaluation of the different methodologies described so far, on the task
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Bearing No.of Samples No. of raw features Conditions

Bearing 1 984 20480 Outer race failure

Bearing 2 984 20480 No defect

Bearing 3 984 20480 No defect

Bearing 4 984 20480 No defect

Table 3: NASA Bearing dataset

of predicting potential failures of equipment within a pre-set time window (e.g.

30 days), based on the analysis of time series analysis.420

To this aim, we chosen two different datasets for investigating predictive

maintenance task in different industrial environments, mainly concerning bear-

ings, being typically undergone to a high speed and very high pressure, and

HDD, one of the main crucial point affecting the reliability of infrastructure

in large-scale data centers. In particular, we leveraged a dataset from the425

PAKDD2020 Alibaba AI OPS 1 competition, with approximately 40 GB of sam-

ples collected from 07/2017 until to 07/2018. Features in the dataset correspond

to S.M.A.R.T. attributes, providing both a raw and a normalised value for each

disk per day, as well as a label and the time of failure.

Furthermore, we used the NASA Bearing dataset2, whose details are shown430

in Table 3. In particular, we are focused on the analysis of the vibration signals

only using the accelerometers along the X-axis. These vibration signals were

recorded using a time window with a duration of 1 second, at an interval of 10

minutes. The sampling rate for data collection is 20KHz. Then, we perform a

noise reduction and data normalization by applying a moving average technique435

and Min-max Normalization, respectively.

1https://tianchi.aliyun.com/competition/entrance/231775/introduction
2https://ti.arc.nasa.gov/c/3/
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6.1.2. Pre-processing and Feature engineering

Pre-processing of the Alibaba dataset happened in two consecutive phases.

First, we carved down a set of relevant features, pruning from over 500 down

to 32. Specifically, we started by removing attributes with a percentage of440

missing values greater than 10% and standard deviation equal to 0, also fully

dropping columns that are not critical in failure prediction. The remaining

missing values were assigned by a moving average with a window of 5 steps

back and 5 steps forward. Furthermore, the dataset overall ratio of healthy

:: unhealthy disks was rebalanced — from 1% to 50% — by reducing the total445

number of healthy disks. In turn, NASA bearing dataset has been sampled from

20KHz to 4KHz by using a windows size equals to five. Since the dataset is not

labelled we proceed to perform this operation through visual analysis to perceive

the moment in which the failure occurs, following the experimental procedure

shown in Markiewicz et al. (2019). In particular, we classified vibration data450

into three classes according to Markiewicz et al. (2019): a HIGH-RISK label for

samples near the breakdown, LOW-RISK label for the samples representing the

normal behaviour and MEDIUM RISK that it represents a state of hypothetical

medium risk of failure. Summarizing, we classify samples in the NASA Bearing

dataset as follows:455

• Samples from 2004-02-12 10:32:39 to 2004-02-17 10:52:39 are labeled as

LOW-RISK

• Samples from 2004-02-17 10:52:39 to 2004-02-18 13:52:39 are labeled as

MEDIUM-RISK

• Samples from 2004-02-18 13:52:39 to 2004-02-19 06:22:39 are labeled as460

HIGH-RISK

We, further, designed the prediction task as a binary problem, in which we

consider the union of the classes HIGH-RISK and MEDIUM-RISK in a single

one.
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Then, raw features were transformed into normalized ones, using the follow-465

ing methods:

• Shift features (Shift): we shifted the original raw features (V (n)) by N

days (V (n−N)), considering different values forN = {1, 3, 5, 7, 10, 15, 20, 30}.

• Relative comparison features (Diff): we computed the difference be-

tween a raw feature (V (n)) and its corresponding shifted feature (V (n −

N)):

Relative(n)[N ] = V (n)− V (n−N) (7)

• Absolute comparison features (Sum): we calculated the sum between

a raw feature (V (n)) and its corresponding shifted feature (V (n−N)):

Absolute(n)[N ] = V (n) + V (n−N) (8)

• Exponential moving average features (Exp): we applied this transfor-

mation on S.M.A.R.T. raw features for each disk according to equation 9:

history(n) = 0.9× history(n− 1) + 0.1× raw(n)

history(−1) = 0
(9)

where raw(n) is the current value of S .M .A.R.T .raw at the n − th step

and history is the cumulative weighted sum of historic data.470

• Division features (Div): they represent the ratio between raw and nor-

malized features, as shown in equation 10:

Division(n) =
S .M .A.R.T .raw(n)

S .M .A.R.T .Normalized(n) + ε
(10)

where ε is a constant used to avoid division by zero.

It is important to note that the number inside the parenthesis in the next

tables corresponds to the shifted feature in terms of number of days.

A grid search has been performed on the basis of hyper-parameters shown

in Table 2, for identifying the optimal ones used for training our models. For475
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Model 1 VGG-like

P F1-score Precision Recall F1-score Precision Recall

15 39.64±0.31 33.04±1.78 31.07±2.34 28.44±0.79 32.23±0.19 27.67±2.41

30 59.24± 0.39 61.15±3.18 57.62±2.61 31.59±1.25 29.58±0.22 34.03±3.13

45 47.94±1.41 42.77±3.47 48.08±2.89 46.67±2.09 43.01±1.74 48.13±3.85

Table 4: Evaluation of the both networks varying the P parameter.

statistical validation of our results, we ran a 10-cross validation Duin (1996);

Benavoli et al. (2017) reporting the mean and standard deviation of each exper-

iment outcome, also performing a stratified sampling strategy for splitting the

dataset in training and test set.

Our evaluation framework was deployed on Google Colaboratory3 using Ten-480

sorFlow V24 and Keras5 to build deep learning models and using pyts6 to per-

form the pre-processing operations and run the time series classification algo-

rithms.

6.2. Evaluation metrics

In this section we describe several metrics used to evaluate the efficiency of485

the proposed framework, that is defined as the ability to assess the equipment

health status within a 30 day interval. Specifically, we define a P-window (set-

ting to 30 days - further details in table 4) as a fixed-size sliding window starting

from the first moment in which a disk is predicted to fail.

Precision for P-window: the fraction of records that actually failed (TP )490

and the fraction expected overall (TP + FP ):

Precision =
TP

TP + FP
(11)

3https://colab.research.google.com/
4https://www.tensorflow.org/
5https://keras.io/
6https://pyts.readthedocs.io/
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where TP and FP are respectively true and false positives.

Recall for R-window: the fraction of predicted failed disks that actually

failed (TP ) over the overall number of failed disks (TP + FN):

Recall =
TP

TP + FN
(12)

where TP and FN are respectively true and false negatives.495

F1-score is defined according to equation 13:

F1 =
2 · Precision · Recall

Precision + Recall
(13)

7. Results

In this section, we discuss the obtained results on the Alibaba HDD (Section

7.1) and NASA bearing (Section 7.2) datasets. Finally, we investigated in Sec-

tion 7.3 how the performance of the discussed methodology varies adopting a

Generative adversarial Networks (GAN).500

7.1. Results on Alibaba HDD

We, firstly, compare the two CNN models described in Section 5.1. Our

aim is to understand how each model performs, based on the best fit between

different encoding techniques — (RP, GAF, MTF, WT) — and pre-processing

approaches (see Section 6.1.2). Summarizing, we compare two different CNN505

networks (one custom and another one pretrained) in order to effectively exploit

the images generated by using the encoding strategies. In this way, our goal is

to compare two different strategies (pretrained vs custom) varying the different

encoding methods. Table 5 shows the performance of both models in terms of

memory usage and overall training time, where Model 1 achieves best results510

independently of encoding method. This result is due to the larger number

of parameters to be optimize within the VGG-like model, resulting in a larger

increase in network training time.

Table 6 shows how different combination of encoding techniques and feature

engineering approaches affect the overall performance of the CNN we dubbed515
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Model Memory(kB) Training time(secs/epoch)

Model 1 470 13.7±0.1

VGG-like 73.000 37.4±0.2

Table 5: Memory usage and training time for both models (independently of encoding method)

Technique F1-score Precision Recall

RP + Sum(1) 22.96±1.34 16.52±0.56 37.61±4.34

MTF + Diff(1) 21.64±0.55 15.74±0.22 34.82±2.22

GADF + Diff(7) 32.50±1.44 24.98±0.64 46.41±3.76

GASF + Exp(15) 31.04±2.09 28.03±0.46 35.01±4.84

WV + Exp(30) 26.67±1.46 21.73±0.31 35.01±5.11

Table 6: Performance of Model 1, based on the different image encoding techniques and pre-

processing approaches used to generate its input. It is important to note that the number

inside the parenthesis in the next tables corresponds to the shifted feature in terms of number

of days.

as Model 1. Evidently, GASF+Exp(15) achieves the best results in terms of

precision, but results in large number of True Negatives (see Table 7). In turn,

GADF+Diff(7) shows the best results in terms of F1-Score, but with a large

number of False Positives (see Table 7).

Moving on to our second CNN model, Table 8 shows the results achieved by520

the VGG-16-like architecture for different combinations of feature engineering

methods and encoding techniques. It should be easy to note that the best

results in terms of F1-score and Precision have been achieved by GASF+Exp(7)

— although it identifies a large number of True Positives — while RP+Sum(1)

reaches best Recall score, but returns a large number of False Positives (Table 9).525

Finally, we investigated the performances of both models on six different

types of faults according to the tag field into the PAKDD2020 Alibaba AI Ops

Competition1, whose results have been shown in Table 10 and 11. In particular,

we can see that GAF, using difference and exponential features over 7 and 15
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Technique TP FP FN TN

RP + Sum(1) 30 155 49 127

MTF + Diff(1) 28 148 52 133

GADF + Diff(7) 50 150 60 101

GASF + Exp(15) 30 75 57 199

WV + Exp(30) 27 100 54 180

Table 7: Model 1: Confusion matrices (median values over repeated tests)

Technique F1-score Precision Recall

RP + Sum(1) 22.17±1.52 15.15±0.70 41.68±5.46

MTF + Diff(1) 20.87±0.82 14.04±0.28 41.29±4.40

GADF + Diff(7) 29.63±1.17 23.53±0.23 40.23±3.62

GASF + Exp(15) 31.59±1.25 29.58±0.22 34.03±3.13

WV + Exp(30) 26.29±1.85 22.32±0.27 32.38±5.04

Table 8: Performance of the VGG-like model, based on the different image encoding techniques

and pre-processing approaches used to generate its input.

Technique TP FP FN TN

RP + Sum(1) 34 182 42 103

MTF + Diff(1) 29 183 42 107

GADF + Diff(7) 45 146 66 104

GASF + Exp(15) 31 74 61 195

WV + Exp(30) 27 95 58 181

Table 9: VGG-like architecture: Confusion matrices (median values over repeated tests)
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days respectively, achieves highest results; this is related to how the encoding530

method handles features distribution over the time from different point of views

(GADF and GASF), representing time series data in multi-channel images.

Table 11 shows the performance metrics of Model 1 on the six available

fault types ([0, 5]), based on the different coding techniques and pre-processing

approaches.535

The results show that Model 1 far outperforms VGG-like, this was expected

since the latter was pre-trained, instead Model 1 was optimized for the type of

tasks to be performed.

7.1.1. Comparison with other models (LSTM,GRU,XGBoost, ResNet-50, DenseNet-

121 and VGG-16)540

Having assessed the overall performance of our CNN models, we now com-

pare our best performing model with respect to alternative NN approaches,

which have been chosen due to their highest effectiveness outcome: an LSTM

and Gated Recurrent Unit (GRU) based model, XGBoost, ResNet-50, DenseNet-

121 and VGG-16. The XGBoost is a machine learning algorithm based on de-545

cision trees using a gradient boosting framework implemented via the XGBoost

library.7

The LSTM and GRU model has 2 layers, each composed of 64 units, and a

final activation layer (softmax). These models were chosen as they have been

reported to perform well on the task. ResNet-50 is a variant of the ResNet550

model (He et al. (2016)) with 48 convolution levels and 1 MaxPool level and

1 Average Pool level. In a DenseNet architecture (Huang et al. (2017)) , each

layer is directly connected with every other layer; specifically the DenseNet-121

version has 120 convolutions, 4 AvgPools and 1 fully connected layer. Finally

VGG16 is based on (Simonyan & Zisserman (2014)), where 16 refers to the555

number of layers with weights, in detail there are 13 convolutional layers, 5

Max Pooling layers, and 3 dense layers. In particular XGBoost was the best

7https://xgboost.readthedocs.io/en/latest/
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Table 10: Performance of Model 1 according to six different HDD fault types, based on the

different images technique and pre-processing approaches used to generate its input.
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Table 11: Performance of VGG-like according to six different HDD fault types, based on the

different images technique and pre-processing approaches used to generate its input.
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performing model in the competition organised by Alibaba.

The original dataset features (S.M.A.R.T. raw and normalised) and some

of the generated features (Shift, Relative and Absolute) were used to maximise560

performance. We contrast the performance of the LSTM, GRU and XGBoost

models with our CNN-based Model 1 coupled with GASF as its image coding

method — as this turned out to be our best performing combination (Table 6).

Model F1-score Precision Recall

XGBoost 40.19±0.60 30.03±0.41 60.85±1.02

LSTM 52.51±1.32 42.87±1.73 67.79±2.24

GRU 51.73±1.81 41.47±1.85 66.81±2.45

VGG-16 52.23±1.74 42.17±1.81 67.21±2.25

ResNet-50 51.91±1.71 41.38±1.75 66.92±2.32

DenseNet-121 51.22±1.83 41.16±1.87 66.24±2.47

CNN Model 1 59.24±0.39 61.15±3.18 57.62±2.61

Table 12: Performances of the CNN Model 1 with respect to six state-of-the-art ones.

Model TP FP FN TN

XGBoost 83 136 51 161

LSTM 96 127 44 166

GRU 89 122 50 170

VGG-16 90 121 51 169

ResNet-50 88 121 55 167

DenseNet-121 87 123 53 168

CNN Model 1 103 67 71 190

Table 13: Confusion matrices (median values over repeated tests)

Table 12 compares our best model against our chosen benchmark models. It

can be seen that our Model 1 performs better in terms of F1-score and Precision,565

while the LSTM model is the best with respect to Recall. Furthermore, the
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Model Memory usage Training time (seconds)

XGBoost 7 MB 780 (2000 estimators)

LSTM 850 kB 6 s/epoch (best at 10-th epoch)

GRU 767 kB 5 s/epoch (best at 15-th epoch)

VGG-16 8 MB 12 s/epoch (best at 21-th epoch)

ResNet-50 11 MB 14 s/epoch (best at 19-th epoch)

DenseNet-121 15 MB 8 s/epoch (best at 26-th epoch)

CNN Model 1 540 kB 91 s/epoch (best at 25-th epoch)

Table 14: Memory usage and training time

number of true positives and true negatives for our CNN model are higher

than those predicted by the XGBoost, GRU, LSTM, VGG-16, ResNet-50 and

DenseNet-121 models (Table 13).

Finally, we compared all models in terms of memory usage and training time570

(Table 14). In terms of memory usage, we found that our model is better than

both the benchmarking models. However, the best overall model in terms of

training time is the GRU one.

Summarizing, Model 1 achieves highest performances in terms of efficacy

and efficiency w.r.t. the VGG-based network, because the latter is a pre-trained575

network.

7.2. Results on NASA Bearing

In this section we discuss about the experimental results by using encoding

techniques to generate images fed in input to CNN classification, whose results

are computed for both labeling procedures (binary and three classes).580

7.2.1. Three Classes Classification Results

We, firstly, analyze the results regarding the prediction of bearing health

status in three classes using CNN, whose output represents the probability that

a sample belongs to one of the three classes. As we can see in Table 15 the
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Encoding Techniques Accuracy Precision Recall F1-Score

GAF+Diff(7) 0.80±0.02 0.84±0.01 0.70±0.02 0.75±0.02

MTF+Exp(7) 0.75±0.01 0.74±0.02 0.74±0.01 0.74±0.02

RP+ Exp(15) 0.87±0.02 0.86±0.01 0.88±0.01 0.83±0.01

WV+Exp(30) 0.79±0.02 0.76±0.02 0.73±0.01 0.75±0.02

Table 15: Performances — 3-class classification

technique that achieves the best performances in all evaluated metrics is the585

Recurrence Plot.

Furthermore, the outcome in Table 15 is supported by the analysis of con-

fusion matrices computed on the predictions made by the model using each

encoding technique on the test set (see Figure 5, 6 and 7).

Figure 5: GAF Confusion Matrix — 3-class classification.

In particular, it is clear that the first class (LOW-RISK) is perfectly recog-590

nized by the network when we use RP is used as an encoding technique, while

the other two classes (MEDIUM-RISK and HIGH-RISK) are confused with each

other. This result is caused by the complexity of recognize the difference be-

tween these two classes which are similar from the point of view of vibration
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Figure 6: MTF Confusion Matrix — 3-class classification.

signals.595

As is possible to see from the Figure 8 the loss curve has a normal shape

with a plateau that stops around the value 0.4 for the validation subset. This

indicates that the network has been trained in the correct way but that the

predictions it makes do not have a high percentage factor.

7.2.2. Two Classes Classification Results600

In this section, we analyze the results about the prediction of bearing health

status in two classes using CNN by combining the classes MEDIUM-RISK and

HIGH-RISK into one building a 2-Band classification model. Table 16 shows

that the best performance in all metrics has been achieved by Recurrence

Plot, also in this task.605

Furthermore, the outcome in Table 16 is supported by the analysis of con-

fusion matrices calculated on the predictions made by the model on the test set

(see Table 17).

It is easy to note that the designed network achieves high performance using

only two classes, improving model prediction assurance; in fact, the confusion610

matrices shows that the numbers of False Positive and False Negative are very
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Figure 7: Recurrence Plot Confusion Matrix — 3-class classification.

Encoding Techniques Accuracy Precision Recall F1-Score

GAF+Diff(7) 0.85±0.02 0.84±0.01 0.83±0.02 0.84±0.02

MTF+Exp(7) 0.81±0.01 0.80±0.02 0.79±0.01 0.80±0.02

RP+Exp(15) 0.96±0.02 0.95±0.01 0.95±0.01 0.95±0.01

WV+Exp(30) 0.83±0.01 0.82±0.02 0.81±0.01 0.81±0.01

Table 16: Performances — 2-class classification

small.

As is possible to see from the Figure 9 also in this case the loss curve has a

normal shape with a plateau that stops around the value 0.2 for the validation

subset. This indicates that the network has been trained in the correct way and615

that the predictions it makes have a better percentage factor than the case with

3 classes.

7.2.3. Comparison with different baselines

In this section, we compared the designed model with respect to those

achieved from two reference models (see Table 18) on the binary classification620

task: the first one is a LSTM, typically used to classify time series for predictive
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Figure 8: Model loss with RP — 3-class classification.

Technique TP FP FN TN

GAF+Diff(7) 131 14 19 33

MTF+Exp(7) 138 7 17 35

RP+Exp(15) 140 5 6 46

WV+Exp(30) 139 8 16 34

Table 17: Confusion matrices (median values over repeated tests) — 2-class classification

maintenance task - whose structure is made of 2 layers, each composed of 64

units, and a final layer with softmax activation function - and the one described

in (Roy et al. (2018)), whose classifier achieved the best performance on the

classification task using the NASA bearing dataset.625

It is worth to note that the proposed network does not exceed the perfor-

mance of the (Roy et al. (2018)) while it achieved better result than LSTM

network in term of Accuracy and F1-score. Table 19 shows the efficiency per-

formance of the designed model with respect to the two examined in Table 18 in

terms of the size of the model in memory and the mean training time required.630
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Figure 9: Model loss with RP — 2-class classification

Model Accuracy F1-score

Roy et al. (2018) 0.98±0.01 0.97±0.01

LSTM 0.90±0.02 0.91±0.02

Proposed CNN 0.96±0.02 0.95±0.01

Table 18: Performances of the three compared models.

It is easy to note that the proposed network is the best model in terms of

Memory Occupation parameter whilst it is faster than Roy et al. (2018) but it

is slower than the LSTM model in terms of Training Time parameter although

the latter achieves worst performance.

To summarize, the proposed model achieves almost similar performance635

while it obtains better Training Time and Memory Occupation w.r.t. Roy et al.

(2018). The advantage of this approach is twofold: on one hand, it can be used

for supporting different learning strategies with the aim to increase classification

effectiveness (e.g. online learning, active learning) and, on other hand, it can

optimize resource allocation, requirements and power consumption.640
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Model Memory usage Training time (seconds)

Roy et al. (2018) 5 MB 60 s/epoch (b. at 60-th ep)

LSTM 850 kB 10 s/epoch (b. at 20-th ep)

Proposed CNN 380 kB 20 s/epoch (b. at 50-th ep)

Table 19: Memory usage and training time

7.3. Benefits of GAN

Despite several strategies have been proposed for data augmentation pur-

pose, some of them (i.e., rotating and flipping) in the encoded image domain

will distort the time domain signal, which is obviously unreasonable (see (Lu &

Tong (2019b)) for some examples). For this reason, we analyze how the perfor-645

mance of the discussed methodology varies adopting a Generative adversarial

Networks. In particular, Table 20 shows that while using a GAN helps in the

training process by providing a slight increase in performance, this small ad-

vantage has to be balanced with heavier demands on training time and memory

resources.650

To deal with the potential drawback failure labels are still within the minor-

ity class, we developed a GAN to be used to increase the number of samples in

the minority class (see Figure 10). The GAN uses a CNN (discriminator) to

distinguish real images from false ones generated by another CNN (generator),

that takes random samples from a Gaussian distribution.655

The GAN model is based on jointly training the discriminator and the gen-

erator model, whose architectural designed are shown in Figure 11 and 12: the

former is trained on a batch composed by half fake and half real samples and

the latter is updated on the loss of the discriminator when frozen. Then the

discriminator model has to predict the probability of a given input image to be660

assigned a label of class ‘0’ (fake) and ‘1’ (real). The generator aims to max-

imise the probability of the discriminator predictions of “truthfulness” for the

artificially generated images. If the discriminator predicts a low average prob-

ability of truthfulness for the artificially generated images, this will result in a
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Figure 10: GAN architecture - It consists of two sub-models, Generator and Discriminator.

The former is responsible for generating new plausible examples from the problem domain.

The second one is used to classify examples as real (from the domain) or false (generated).

large back-propagated error signal in the generator. Consequently, this error665

will bring a relatively large feedback to the generator to improve its ability to

generate “good” false samples in the next batch.

We further justified our assumption observing the generator’s loss behavior.

For the sake of simplicity, we show the loss about HDD dataset in Figure 13,

where it is easy to note that the generator’s loss becomes almost constant be-670

tween 2000 and 3000 (number of batches) suggesting that the generator is be-

having positively.

7.4. Combination of Encoding strategies

Due to the advances proposed in the recent literature (Ahmad et al. (2021);

Ahmad & Khan (2021)), an ensemble of encoding techniques has been applied675

by combining various strategies, described in Section 3, in order to improve the

performance and reliability of the model. In fact, for each sample, a single three

channel input volume (40 × 40 × 3) is obtained through three different images

generated by applying three different encoding strategies (GAF, MTF, RP),
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Figure 11: Discriminative network Figure 12: Generative network
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Technique F1-Score Precision Recall

A
li

b
a
b

a Without GAN (GASF + Exp(15)) 31.59±1.25 29.58±0.22 34.03±3.13

With GAN (+25% fake tensors) 34.47±2.13 32.46±0.22 37.02±4.96

With GAN (+50% fake tensors) 32.52±1.24 27.43±0.66 40.16±3.91

B
ea

ri
n

g Without GAN (RP + Exp(15)) 0.95±0.01 0.95±0.01 0.95±0.01

With GAN (+25% fake tensors) 0.97±0.02 0.97±0.03 0.96±0.02

With GAN (+50% fake tensors) 0.96±0.01 0.96±0.02 0.97±0.01

Table 20: Results of data augmentation with GAN on Alibaba HDD and NASA Bearing

datasets.

Figure 13: Loss plot for real and fake samples, and the generator
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respectively. We used the same network parameters and the related training680

from previous experiments, only modifying the network input according to the

new input. In Table 21 the experimental results compared the performance of

the 1 and 3 channel networks. They show a slight increase in the confidence

interval of the combination strategy, being the loss statistically smaller in the

second network, although the performance in terms of accuracy and F1 is not685

statistically different.

Encoding Type Accuracy F1-score Loss

1-Channel 0.96±0.02 0.95±0.01 0.06±0.01

3-Channel 0.96±0.01 0.94±0.01 0.01±0.01

Table 21: Performance of 3-channel encoding

8. Discussion & Conclusions

The increasing internal complexity of industrial systems has made preventive

maintenance and effective monitoring techniques a fundamental necessity. In690

this sense, well-done predictive maintenance has been shown to bring several

advantages to a variety of businesses and industrial settings. For instance, in the

context of large data centers, being able to correctly predict the exact moment

in time in which an HDD will become faulty can preventing costly data losses

and unexpected service down-times. Furthermore, monitoring and diagnostics695

of mechanical components is a need for every maintenance center in Industry.

Importantly, the digital advances of the last decade make it so that huge

amount of data about the inner workings of industrial systems at each level

can be made available in real time. What seems to be essential, then, is to

develop sound and reliable techniques that can effectively exploit this richness700

of information.

With this in mind, in this paper we offered an evaluation framework to
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benchmark on predictive maintenance tasks some of the most diffused time

series encoding techniques together with Convolutional Neural Network (CNN)

image classifiers. Image classifiers have been shown to handle extremely well705

some of the most prominent shortcoming of the data available for predictive

maintenance (e.g., missing data or data sparsity). Thus, it seems important

to explore the performance of these models when combined with techniques to

convert time series data from industrial processes into image encoding.

We considered four types of encoding methods, and evaluated two different710

CNN models on the PAKDD2020 Alibaba AI Ops Competition and the NASA

Bearing datasets, containing information about HDD health status in big data

centers and vibration signal of bearing recorded using a time window with a

duration of 1 second, respectively. Additionally, we explored the hypothesis

that adopting a GAN could further improve a model’s performance. As it turns715

out, while the addition of a GAN to our training pipeline did slightly increase

overall prediction performance, this was at the cost of significant additional

training time and computing resources. Thus, we suggested that the overall

performance increase is not enough to justify the additional computing costs.

In a second evaluation step, we compared our best performing combination720

of CNN model and encoding technique with respect to three and two bench-

marking neural network models on the Alibaba and NASA bearing datasets,

respectively As a baseline, we considered an LSTM model and XGBoost —

which had achieved the top scores at the PAKDD2020 Alibaba AI Ops Compe-

tition in 2020 — and another LSTM model and another described in Roy et al.725

(2018) — whose classifier achieved the best performance on the classification

task using the NASA bearing dataset. We extensively discussed the trade-offs

between computing resources and general performance of our model compared

with these two benchmarking approaches, across a variety of evaluation metrics.

While the CNN model trained on image encoding of time series performed730

well when compared to the other models, its increased performance has to be

balanced with heavier resource commitments — for instance in terms of time.

In particular, we can note that the use of deep-learning based model, whose
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input is generated by encoding techniques, enables a more easily training process

using well-known encoding techniques, also reducing the tendency to exhibit735

vanishing gradients.

Overall, in the novel context of predictive maintenance tasks, our results

support the combined use of image encoding techniques with neural network

models like CNNs. Moreover, the work in this paper shows the importance of

conducting extensive cross-model evaluations across a variety of tasks.740

Summarizing, we can see that the proposed approach achieves results similar

or better than the state of the art for both datasets, also achieving highest

performance in terms of efficiency.

To address some of the shortcomings highlighted by our results, future work

will explore the combination of encoding techniques with a tiled CNNs (Ngiam745

et al. (2010)), which have been shown to be computationally more efficient than

standard CNNs. Moreover, additional focus on developing a more effective

GAN could be beneficial. Finally, in this paper we tested performances of a

CNN model coupled with a single image encoding technique. In this sense,

exploring the possibility of adopting an ensemble model could lead to further750

increases in classification performance, as well as investigating XAI approaches

for explaining mis-classification in order to support practitioners in their job.
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