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One Big Question

Which aspects of grammar influence sentence processing?

Syntax

Parsing

Do structure building operations predict behavioral results?

How do structure building/memory metrics fare wrt
expectation based ones?
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Forward to the Past

(How much) does grammatical structure matter
in sentence processing?

A realistic grammar should [...] contribute to the explana-
tion of linguistic behavior and to our larger understanding
of the human faculty of language.

(Bresnan 1978: pg. 58)

Derivational Theory of Complexity (Miller and Chomsky, 1963)

» Processing complexity ~ length of a derivation
(Fodor & Garrett 1967; Berwick & Weinberg 1983)

> Essentially: there is a cost to mental computations.
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(How much) does grammatical structure matter
in sentence processing?

A realistic grammar should [...] contribute to the explana-
tion of linguistic behavior and to our larger understanding
of the human faculty of language.

(Bresnan 1978: pg. 58)

Derivational Theory of Complexity (Miller and Chomsky, 1963)

» Processing complexity ~ length of a derivation
(Fodor & Garrett 1967; Berwick & Weinberg 1983)

> Essentially: there is a cost to mental computations.

> What is the right notion of syntactic derivation?
> What is costly? And why?
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Minimalist Grammars (MGs) & Derivation Trees
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MG Syntax: Derivation Trees
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» Complexity of the structure ~ how much memory is used!
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Technical details!

» String-driven recursive descent parser (Stabler 2013)
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Incremental Top-Down Parsing

Technical details!

» String-driven recursive descent parser (Stabler 2013)
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Incremental Top-Down Parsing

Technical details!

» String-driven recursive descent parser (Stabler 2013)
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Incremental Top-Down Parsing

Technical details!

» String-driven recursive descent parser (Stabler 2013)
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Index and Outdex are our connection to memory!
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Measuring Memory Usage
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Measuring Memory Usage

» Memory usage: index‘/ér":(aﬁ
(Kobele et al. 2012; Gibson, 1998) 20, outdex
Tenure How long a node is kept in memory 311064 ETP“
| Who | does | Salem | mock | \ / \
Tenure | 1 | 5 | 5 | 5 | \4Salemy  4T's
/ N\
» Formalized into offline complexity metrics L T PVPe
(Graf et a. 2017; De Santo 2020, 2021; a.0.) N AR
whoz

MaxT maz({tenure-of(n)|n a node of the tree})
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A Case Study: English SRC vs ORC

Results

(1) The horse that has chased the lions SRC
(2) The horse that the lions have chased ORC
SRC > ORC

> Well-attested cross-linguistically (Lau & Tanaka 2021)
> ... with some possible exceptions (Mandarin?)
Possible Accounts?
» Working-memory
(Warren & Gibson 2008; Lewis & Vasishth, 2005; a.o.)
= BUT: Nakamura & Miyamoto 2(013) Cf. Graf et al (2017)
P Expectation-based accounts

(Hale 2001; Demberg Keller, 2008; Chen & Hale 2021)
= BUT: Levy & Gibson (2013); Huang et al. (2024)

10



MG Parsing SRC/ORC Results
Modeling Assumptions

Data
» SAP Benchmark (Huang et al. 2024)
> self-paced reading
» 2000 participants
> SRC/ORC RTs
> 24 RC sets

11



MG Parsing SRC/ORC Results
Modeling Assumptions

Data
» SAP Benchmark (Huang et al. 2024)

> self-paced reading

» 2000 participants

> SRC/ORC RTs

> 24 RC sets
Reminder: Model Details

> Parsing strategy
= Top-down parser

» Linking Hypothesis
= Processing Cost :: (word-by-word) Tenure

11



MG Parsing SRC/ORC Results
Modeling Assumptions

Data
» SAP Benchmark (Huang et al. 2024)

> self-paced reading
» 2000 participants
> SRC/ORC RTs
> 24 RC sets

Reminder: Model Details

> Parsing strategy
= Top-down parser

» Linking Hypothesis
= Processing Cost :: (word-by-word) Tenure
Degrees of freedom: Syntactic analyses

» RC constructions — (Kayne 1994)

11
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Results: Model Comparison
Baseline Model (Huang et al. 2024)
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Baseline 14 9771225 977250.8
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Results: Model Comparison

Baseline Model (Huang et al. 2024)

RT ~ WordPosition(i) + log freq(i) * length(i)
+ logfreq(i — 1) x length(i — 1) 4+ log freq(i — 1) * length(i — 2)

+ (1|participant) + (1]item)

Results

df AIC BIC
Baseline 14 9771225 977250.8
+ LSTM Surprisal 19 976309.1 976483.1
+ GPT-2 Small Surprisal 19 9763019 976475.9
+ Tenure 19 974413.7 974587.7
+ LSTM Surprisal + Tenure 23 9741748 974385.5
+ GPT Surprisal 4+ Tenure 24 974106.3 974326.2

12
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Results: Best Fitting Model
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Conclusion
MG-based Tenure is a good predictor of RTs.
» Support for MGs + Tenure beyond offline measures!
> Bridge generative syntax/sentence processing!

P> Next: cross-linguistic online data, Tenure and empty heads...
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Conclusion

MG-based Tenure is a good predictor of RTs.
» Support for MGs + Tenure beyond offline measures!
> Bridge generative syntax/sentence processing!

P> Next: cross-linguistic online data, Tenure and empty heads...

The tip of the iceberg!

> Structure- vs. expectation-based predictors!
(Demberg & Keller 2008; Brennan et al., 2016; Stanojevic et al.,
2023; Ozaki et al. 2024)

» Deeper exploration of computational linking theories
(Futrell et al., 2020; Chen and Hale, 2021; Oh et al., 2022; Arehalli
et al., 2022; Kajikawa et al. 2024)

» Cross-formalism comparisons

» And much more!
14
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Minimalist Grammars (MGs)

We need an explicit model of syntactic structures...

» Minimalist grammars (MGs): a
formalization of Chomskyan
syntax
(Chomsky 1995; Stabler 1997)

Technical details!
» Weakly equivalent to MCFGs

» Essentially: CFGs with a more
complicated mapping from trees
to strings

» REG tree language!

Ed Stabler
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Why MGs?

Vast analytical coverage
» MGs handle virtually all analyses in the generative literature

A Centrality of derivation trees

» MGs can be viewed as CFGs with a more complicated mapping
from trees to strings

Simple parsing algorithms
P Variant of a recursive descent parser for CFGs
= cf. TAG (Rambow & Joshi, 1995; Demberg, 2008)
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Some Important Properties of MGs

» MGs are weakly equivalent to MCFGs and thus
mildly context-sensitive. (Harkema 2001, Michaelis 2001)
» But we can decompose them into two finite-state components:
(Michaelis et al. 2001, Kobele et al. 2007, Monnich 2006)
» a regular language of well-formed derivation trees
» an MSO-definable mapping from derivations to
phrase structure trees
> Remember: Every regular tree language can be re-encoded
as a CFG (with more fine-grained non-terminal labels).
(Thatcher 1967)
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Fully Specified Derivation Trees

Phrase Structure Tree
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Vo oty Dt Dt v N
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Derivation Tree
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Technical Fertility of MGs

MGs can accommodate the full syntactic toolbox:

| 2

VVVYyVvVVVYyVYVYyYVYY

sidewards movement (Stabler, 2006; Graf 2013)
affix hopping (Graf 2012; Graf2013)

clustering movement (Gartner & Michaelis 2010)
tucking in (Graf 2013)

ATB movement (Kobele 2008)

copy movement (Kobele 2006)

extraposition (Hunter &Frank 2014)

Late Merge (Kobele 2010; Graf 2014)

Agree (Kobele 2011; Graf 2011)

adjunction (Fowlie 2013; Hunter 2015)
TAG-style adjunction (Graf 2012)
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Why These Metrics?

P> These complexity metrics are all related to storage cost

(cf.

Gibson, 1998)

» We could implement alternative ones

(cf.

vVVYyVYYVYY

Ferrara-Boston, 2012)

number of bounding nodes / phases
surprisal

feature intervention

status of discourse referents
integration, retrieval, ...
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Why These Metrics?

P> These complexity metrics are all related to storage cost
(cf. Gibson, 1998)

» We could implement alternative ones
(cf. Ferrara-Boston, 2012)

number of bounding nodes / phases

surprisal

feature intervention

status of discourse referents

integration, retrieval, ...

vVVYyVYYVYY

> We want to keep the model simple (but not trivial):

> Tenure and Size only refer to the geometry of the derivation
> they are sensitive the specifics of tree-traversal
(cf. node-count; Hale, 2001)
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