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Abstract

The complexity of linguistic patterns has been object of extensive debate in
research programs focused on probing the inherent structure of human language
abilities. But in what sense is a linguistic phenomenon more complex than
another, and what can complexity tell us about the connection between linguistic
typology and human cognition? This chapter approaches these questions by
presenting a broad and informal introduction to the vast literature on formal
language theory, computational learning theory, and artificial grammar learning.
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In doing so, it hopes to provide readers with an understanding of the relevance of
mathematically grounded approaches to cognitive investigations into linguistic
complexity, and thus further fruitful collaborations between cognitive scientists
and mathematically inclined linguist and psychologist.
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Introduction

Questions about the complexity of linguistic patterns have always played a central
role in research programs focused on probing the inherent structure of human
language abilities. In fact, even a quick glance at recent research in (psycho)
linguistics will reveal an abundance of references to concepts like complexity,
simplicity, economy, often associated with computational processes within the lan-
guage system. But in what sense is a linguistic phenomenon more complex than
another? Most times, these appeals to complexity characterizations lack precise,
unambiguous definitions, and are more often than not expressed in the form of
general verbal theories. This reliance on intuitive notions over proper formalization
is not just a problem in linguistics and psycholinguistics, but it seems to be
widespread in the psychological sciences at large. In contrast, this chapter aims to
highlight the plethora of insights that come from grounding theories of linguistic
cognition on the firm foundation provided by rigorous mathematical formalization.

Mathematical characterizations allow researchers to spell out the assumptions
(e.g., about available resources, mechanisms, and representations) and implications
of their theories, before testing them in experimental settings or computer simula-
tions (Kaplan, 2011; Martin & Baggio, 2019; Guest & Martin, 2021). A focus on
transparency and lack of ambiguity is fundamental in the study of complex and often
opaque cognitive abilities, which can only be observed indirectly through behavior.
Importantly thought, there are risks in computational models themselves. Kaplan
(1995), for instance, warns against the “compelling temptations or seductions” one
risks to fall into when applying computational methodologies to cognitive questions
without explicitly laying out an underlying theoretical stance. That is, it is possible to
adopt computational models and focus on their ability to exploit observations about
the data to make new (sometimes correct) predictions about expected behavior.

However, if these models are themselves opaque and ill-understood – that is,
employed without an understanding of what causal relations connect the way these
models generalize from observed data to new predictions – there is little they
actually contribute to the cognitive study of language (Newell, 1973; Kaplan,
1995; Martin & Baggio, 2019). What seems to be desirable is to leverage well-
understood mathematical approaches, which can make causal predictions about what
is expected of one’s theory, by specifying the relation between the assumptions of the
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theory and the observed data in an explanatory fashion (Boone & Piccinini, 2016;
Levy & Bechtel, 2013; Guest & Martin, 2021).

The present chapter explores the contributions of the mathematical theory of
computation in developing questions of this type. First, the chapter discusses the role
computability theory played in the radical transformation underwent by the cognitive
sciences, psychology, philosophy, and linguistics at the beginning of the twentieth
century (Miller, 2003; Núñez et al., 2019). In line with this, the complexity of
linguistic patterns is then approached from the perspective of Formal Language
Theory (FLT). The abstractness and rigor of this framework allows for explicit
hypotheses on the relation between linguistic phenomena (typological and experi-
mental) and the cognitive mechanisms underlying human linguistic abilities. Formal
Language Theory has a rich history with respect to its interactions with formal
linguistics, and it has been leveraged in a wide variety of experimental studies
probing human linguistic abilities – within and across linguistic domains, as well
as for comparative studies of animal communication systems (Reber, 1967; Rogers
& Pullum, 2011; Hauser et al., 2002; Fitch & Hauser, 2004; Rogers & Hauser, 2009;
Fitch et al., 2012; Udden et al., 2009, 2020; Levelt, 2020; Wilson et al., 2020, a.o.).
Importantly, the reader will not find an in-depth review of the variety of results
sparkled by this line of research across multiple fields (psycholinguistics, evolution-
ary linguistics, neurolinguistics, animal cognition, among many). Instead, the goal of
the chapter is to clarify the way Formal Language Theory identifies necessary
components of the patterns under analysis, and how such characterizations of pattern
complexity are then reflected in predictions about the hypothesis space of learning
mechanisms. A detailed discussion of the relation between formal languages, gram-
mars, and the ties between typology and learnability is thus followed by a formal
characterization of the learning problem. With the formal apparatus in place, the
chapter concludes with an overview of the ways these characterizations can be used
to test precise experimental predictions in an Artificial Grammar Learning frame-
work, while avoiding common fallacies of such experiments.

Through a formal but accessible overview of these topics, the chapter guides
readers to an understanding of foundational and state-of-the-art concepts in formal
language theory, how they are influenced (and were influenced) by linguistic
insights, and how they can be used to inform our understanding of linguistic
cognition – thus providing the reader with the tools to successfully explore and
evaluate existing experimental results on language complexity and learnability.

Mathematical Theories of Language and Cognition

The cognitive sciences owe much to the painstaking work of mathematicians in the
beginning of the twentieth century – which set the stage for a variety of common-
place concepts and terminology as understood in cognition today: computation,
process, algorithm, and so on. It is often tempting to conceive of these as metaphors.
However, as Pylyshyn notes in his discussion of the nature of cognition and of
cognitive theories, “the kinds of theories cognitive scientists entertain are intimately
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related to the set of tacit assumptions they make about the very foundations of the
field of cognitive science. In cognitive science the gap between metatheory and
practice is extremely narrow” (Pylyshyn, 1984).

With this in mind, what is the contribution of mathematical formalization to the
study of cognition, and language in particular? Niyogi (2006) distinguishes between
mathematical and computational descriptions, and points out that

Mathematical models with their equations and proofs and computational models with their
programs and simulations provide different and important windows of insight into the
phenomena at hand. In the first, one constructs idealized and simplified models but one
can now reason precisely about the behavior of such models and therefore be sure of one’s
conclusions. In the second, one constructs more realistic models but because of the com-
plexity, one will need to resort to heuristic arguments and simulations. In summary, for
mathematical models the assumptions are more questionable but the conclusions are more
reliable – for computational models, the assumptions are more believable but the conclu-
sions more suspect. (Niyogi, 2006, p. 43)

In this sense, it is important to disentangle the notion of computation in cognition
from computational models of cognition. The development of a theory of computa-
tion came from an attempt to resolve a period of intense upheaval in the scientific and
mathematical world: Cauchy’s (1821) methods for solidifying the calculus, White-
head and Russell’s (1912) axiomatic method in Principia Mathematica, the Hilbert
program (Hilbert, 1928) to prove the consistency and foundational security of
mathematics, and Carnap’s proposals for logically reconstructing science in an
experience (Carnap, 1928) are some examples of the first work along these lines.
Hilbert, in particular, was interested in salvaging classical mathematics from the
paradoxes of set theory.

I should like to eliminate once and for all the questions regarding the foundations of
mathematics, in the form in which they are now posed, by turning every mathematical
proposition into a formula that can be concretely exhibited and strictly derived, thus
recasting mathematical definitions and inferences in such a way that they are unshakable
and yet provide an adequate picture of the whole science. (Hilbert, 1928, p. 464)

Alan Turing’s attempt to untangle this problem simultaneously produced what
was effectively the first mathematical model of cognition, in the form of a theory of
computation. His paper On computable numbers, with an application to the
Entscheidungsproblem introduced several concepts and results that are fundamental
to the modern study of computation (Turing, 1937, 1938). In his words, “We may
compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions” (Turing, 1937). Turing conceived of a
mathematical model of the cognitive phenomenon under study (now known as a
Turing machine), and the range of tasks or behaviors it could possibly achieve
(computably enumerable functions). Notably, Turing’s second result was negative:
there are some mathematical propositions which cannot be solved or performed
mechanically by a machine possessing such universality.
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Via these two results, Turing attempted to rigorously analyze the scope of
“mechanical” intelligent processes or behaviors. Via explicit mathematical precision,
Turing proved that there exist possible tasks, problems, or behaviors where the result
is completely certain, but where no amount of mechanically intelligent processing
will give that right result for every possible input. What does such a formal cognitive
result provide? One could think of infinitely many other informal or intuitive
definitions that could then be plausibly tested with experiments. The formal
approach necessarily supersedes them all (van Rooij & Baggio, 2021).

The importance of mathematical negative results is well put by Turing himself,
who clarified that his results “are mainly of a negative character, setting certain
bounds to what we can hope to achieve purely by reasoning. These, and some other
results of mathematical logic, may be regarded as going some way toward a
demonstration, within mathematics itself, of the inadequacy of ‘reason’ unsupported
by common sense” (Turing, 1954). Turing explicitly hypothesized that limits of
human reasoning have consequences for building theories of cognition, and con-
cluded that theories of unconscious mental capacities must accompany the overt
capacities that can be governed by conscious reasoning.

With Turing’s discovery, more and more equivalent models of computation
emerged. Consequently, Kleene (1952) transformed these results into the comput-
ability thesis: there is an objective notion of effective computability independent of
a particular formalization. What has come to be known as the Church-Turing thesis
states that a function on the positive integers is effectively calculable if and only if it
is computable. More broadly it is the thesis that anything computable can be
computed with a Turing machine or its equivalents (e.g., Church’s lambda calculus).
As the universality of computation emerged, the rigor and analytic transparency
underlying the work became increasingly apparent.

The discovery of computational limits immediately transformed fields like biol-
ogy and behavioral sciences, and facilitated the creation of the new field of Cognitive
Science – which incorporated the study of computation as one of its pillars. Perhaps
the most well-known case of the transformation in biology is the representation of
the storage structure of DNA, discovered by Rosalind Franklin and later built on by
James Watson and Francis Crick. The computability thesis demonstrated that a
sequence or string of symbols from a fixed finite alphabet is the basis for all
computations, since any program can be viewed as a string. The genetic discovery
stated that DNA can be stored as strings over an alphabet of four symbols: A, G, T,
and C, representing four nucleotides which are read by a particular type of computer
(Searls, 2002). This is just one of the myriad ways that biological processes may be
viewed as computation (see Brenner, 2012; Danchin, 2008, for more examples).

A large implication of Turing’s and Church’s insights, as Kleene showed, was that
there must be a distinction between the computation and the device doing the
computing. This distinction is obvious to anyone who writes programs, but can
also be seen in things like traffic signals, maps of a city, or blueprints to a building.
Consider this recent statement regarding the distinction in molecular biology:
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If constraints exist as to what sorts of modules and linkages can generate effective and robust
behaviours, then fewer possibilities will need to be considered. The tool-kit of modules and
of the linkages between them that operate in cells may thus be limited, reducing the
complexity of the problem that has to be solved. [. . .] We need to know how information
is gathered from various sources, from the environment, from other cells and from the short-
and long-term memories in the cell; how that information is integrated and processed; and
how it is then either used, rejected or stored for later use. The aim is to describe how
information flows through the modules and brings about higher-level cellular phenomena,
investigations that may well require the development of new methods and languages to
describe the processes involved. (Nurse, 2008, p. 425)

This statement mirrors almost exactly Marr’s (1982) methodological separation
of the different levels at which one must understand a particular cognitive faculty
(vision, in his case), now widely adopted in cognitive science. Marr distinguished a
computational level, a representations and algorithmic level, and an implementation
level (Marr et al., 1991). The computational level specifies as precisely as possible a
statement of the problem under study (e.g., the nature of the function from an input to
an output). The algorithmic level defines what representational systems are used, and
how to manipulate their outputs. Crucially, Marr considered representation to be a
key element for understanding computation, but put it at the same level as algo-
rithms. Finally, the implementation level specifies how the information-processing
model is meant to be solved biologically by cells, synapses, neuronal circuits, etc.

The importance of this separation between the system and its substrate cannot be
understated. Independence between software programmers and hardware designers
allows unprecedented progress in each area, with the knowledge that the formal links
between them are guaranteed to still exist. In the same way, Marr’s adoption of this
framework allowed cognitive scientists to isolate the processes of cognition, all the
while knowing that there was a biological substrate at a more refined level of
description. It also allowed neuroscientists to understand what exactly the cell-to-
cell interactions and circuit behaviors they observed and theorized about were
supposed to be doing.

A linguistically relevant and generally successful example of the computational
independence in Marr’s framework comes from the study of systems that learn. Just
as a computability theory studies a human in the process of computing a real number,
a learning theory studies a human in the process of mapping a finite set of experi-
ences to a real number, which represents some finite description of potentially
infinite data that the human may not ever see. The particular characteristics of
such a learning system will be explained more in the sections to follow. Just like
with computability, negative results again arise when one looks at the full scope of
learnability from a formal and analytical perspective. Just as with computation itself,
there are distinctions between what is effectively learnable, and what is effectively
unlearnable.

In the cognitive study of language, what is often called the “logical problem of
language acquisition” (Hornstein & Lightfoot, 1981) is the observation that “there is
no free lunch – no way to generalize beyond the specific training examples, unless
the learner commits to some additional assumptions” (Mitchell, 2017, p. 4). Given a
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finite set of observations, there are an infinite number of possible generalizations
consistent with them. This is true for every problem that can be abstracted as
inducing generalizations from data. Thus, in order to arrive at a single, “correct”
generalization, learners must be constrained in specific ways. Such constraints must
exist a priori of the hypothesis space of the learner, and are thus separate from
the observed data. Note that this is a logical inevitability of learning theory. The
controversy is in where such priors must reside. A connectionist assumes that the
biases correspond to the features defining the topology of a “neural” network. A
behaviorist might assume constraints on the way generalizations are made. A nativist
would say they reside in a priori categories, mechanisms, and constraints.

This perspective is a longstanding pillar of the field of ethology which gained a
new strength after assaults by early twentieth-century behaviorism, thanks to the
newfound appreciation for the limits of reasoning and abilities. Eric Lenneberg, a
crucial influence on the biological study of language, championed the idea of
structural limits in learning since the early 1950s. In his “Biological Foundations
of Language,” Lenneberg noted that “there is no possible way in which we could
think of a device, natural or artificial, that is freed from all structural information”
(Lenneberg, 1967, p. 394). Like Turing, Lenneberg understood the importance of
hypothesis classes for learning, noting that “within the limits set, however, there are
infinitely many variations possible. Thus the outer form of languages may vary with
relatively great freedom, whereas the underlying type remains constant” (Lenneberg,
1967, p. 374). Compare this to a later statement by the language acquisition
researcher Lila Gleitman (1990), that “the trouble is that an observer who notices
everything can learn nothing, for there is no end of categories known and construct-
ible to describe a situation.” Applying this same concept to the biological substrate
of a learning system, the cognitive scientist Gallistel (1999) notes that

Adaptive specialization of mechanism is so ubiquitous and so obvious in biology, at every
level of analysis, and for every kind of function, that no one thinks it necessary to call
attention to it as a general principle about biological mechanisms [. . .] From a biological
perspective, the idea of a general learning mechanism is equivalent to assuming that there is
a general purpose sensory organ, which solves the problem of sensing. (Gallistel, 1999,
p. 1179)

Thus, any debate that exists regards the properties of the innate constraints
required for learning, not the existence of such innate constraints themselves. In
real-world environments, an almost limitless number of distinct possible situations
may occur. Thus, theories of the cognitive capacity of learning focus on the general
properties of the significant generalization aspect: any learned behavior or task or
function must be productive – effective in novel situations, not just those identical to
what has already been experienced.

Suppose, adapting an example from Valiant (2013) which is probably familiar to
many schoolchildren in the USA, that a child is playing a game at a county fair. In
front of the child is an unreasonably large container with millions of plastic gaming
chips, each one labeled with a different number. The child can reach in and draw

Mathematical Linguistics and Cognitive Complexity 7



10 chips at random, and they must guess which numbers occur at least once among
all the remaining chips. Will the child be able to win, or should an adult interfere to
stop them from being scammed?

It should be immediately obvious that if the child approaches the game with no
assumptions at all, there is no way to win. Why? As Valiant explains, there is a
possibility that every chip has a unique number. In this case, any 10 chips the child
draws will never enable them to identify numbers on the remaining chips. At the
opposite extreme, if the game operator tells the child that all the chips are identical,
then a single sample gives the child complete knowledge about all the remaining
chips. With this constraint, the child can never lose. There are many other interesting
scenarios between these two extremes.

This game may seem absurd and trivial, but as Valiant (2013) notes, it is precisely
the mathematical perspective that allows us to abstract away from the absurd
particulars. Which possible constraints on a child/learner ensure that its algorithm
is verifiably correct, effective, and feasible? Or, put another way, “We should
somehow specify additional constraints on the generating process. But which con-
straints are plausible?” (Schmidhuber, 2002). As Valiant (2013) discusses, general-
izing from a small number of types to an arbitrarily large set of types shows that the
amount of evidence required to guarantee that a target hypothesis is chosen grows
exponentially. A learning framework where the ability to generalize depends on
exponentially many examples in terms of the number of types is completely infea-
sible, not to mention unrealistic. It is no surprise that the child “feels it all as one
great blooming, buzzing confusion” (James, 1910).

However, humans learn language and many other abilities from incredibly small,
distributionally skewed samples, even in cases where the number of possible
distinguishable individual words and phrases is gigantic (Yang, 2013). Perhaps
one could constrain the algorithm to learn from a set of examples that are polynomial
in the number of types n. A learner which needs n or n2 or even n3 examples will
learn more feasibly than a learner which relies on exponential data like 2n. After
seeing n examples, the learner should be able to generalize to a set with greater than
n members. As Valiant (2013) notes, varying the conditions on an algorithm’s
evaluation can mean the nature of the county fair chip game guarantees a loss or
win, every time. Robust evaluation means the child does not even have to waste
money trying hypotheses, nor does an experimenter have to make a group of
participants play the game. The lessons for learning experiments here are powerful.

The distinction between computational and mathematical approaches outlined at
the beginning of this section may seem odd, now that computation has been shown
to be an analytically rigorous mathematical theory. Historically however, the term
computational has drifted to encompass the sense outlined in the beginning, that of
constructing a specific program and running specific simulations on a phenomenon
of interest to see if the system effectively calculates or learns the behavior in
question. The argument presented here and in the rest of the chapter is that the
general analytical results are uniquely privileged. Practically, they make it possible
to avoid redundant simulations or experiments, by clarifying a priori when a problem
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will never work given specific resources. Or to find out that in fact the problem was
trivially solvable on the conditions one set forth.

This distinction is particularly relevant nowadays, as the fields of Artificial
Intelligence (AI) and Cognitive Modeling come more and more to prominence,
while surprisingly straying from an analytic relationship to the broader cognitive
sciences. The computer scientist Weizenbaum has a more critical view.

[AI practitioners] simply mistake the nature of the problems they believe themselves to be
“solving”. As if they were benighted artisans of the seventeenth century, they present
“general theories” that are really only virtually empty heuristic slogans, and then claim to
have verified these “theories” by constructing models that do perform some tasks, but in a
way that fails to give insight into general principles [. . .] Furthermore, such principles cannot
be discovered merely by expanding the range of a system in a way that enables it to get more
knowledge of the world. Even the most clever clock builder of the seventeenth century
would never have discovered Newton’s laws simply by building ever fancier and more
intricate clocks! (Weizenbaum, 1976, p. 196)

In line with this, the work reviewed in this chapter wants to underline how, if one
strives for a successful theory of cognitive abilities, interpretable formalization
cannot be ignored. Mathematical rigor provides a clarity of purpose and a guard
against uncertainty, that is unique in the natural sciences. Thus, it is by necessity
complementary to empirical studies of phenomena in cognition (Niyogi & Berwick,
1996; Niyogi, 2006). The advantages of this approach have been clear since Euclid:
take a system, decompose it into its parts, idealizing when necessary and to varying
degrees, and understand what consequences those choices have. This approach
might force researchers to slow down, and sometimes produce unsatisfying or
counterintuitive results. But, as demonstrated by its adoption in field after field,
this is a framework that provides a level of insight that could not be attained
otherwise. The remainder of this chapter attempts to showcase the ways in which
this kind of formalization can enlighten the study of language, of learning, and of
linguistic cognition at large.

Formal Language Theory and Cognitive Theories of Language

The previous section discussed in depth how computational concepts and mathe-
matical tools have been fundamental in theory development in the larger cognitive
sciences. In this sense, the study of human linguistic cognition has suffered from the
same issues of other psychological sciences. That is, privileging establishing effects
of linguistic behavior over a search for deep explanatory principles (Cummins,
2000). This might be partially due to skepticism for high level abstraction, and a
belief that mathematical formalization leads to losing track of the real empirical
facts. Moreover, some of the resistance against formalization seems to come from
confusing highly specified formal theories, with narrative theories enriched with
technical jargon and complex mathematical notation. In contrast to these views, the
rest of this chapter aims at exemplifying how it is possible to draw useful
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generalizations about linguistic cognition, by evaluating language patterns in terms
of (a specific notion of) computational complexity.

When motivated and understood, precise formal characterizations are fundamen-
tal to the study of linguistic objects, as they allow for the development of theories
that are falsifiable and explanatory: they not only aim to account for certain sets of
data and to make predictions about which kind of data are to be expected, but are
able to offer transparent explanation as to the relation between data and predictions
(Martin & Baggio, 2019; van Rooij & Baggio, 2021; van Rooij & Blokpoel, 2020;
Guest & Martin, 2021).

Focusing on the computational properties of linguistic processes allows
researchers to take a step back from framework-specific analyses and ask precise
questions about the nature of the generalizations observed in natural languages. In
line with this, this chapter takes a particular stance on the complexity of linguistic
patterns grounded in formal language theory (FLT). While FLT is extensively
studied in the more formal subareas of computer science, it has a long history in
generative linguistics – starting with Noam Chomsky and Marcel Schützenberger’s
early work (Chomsky & Schützenberger, 1959; Chomsky, 1959), based on the
results by Alan Turing and Emil Post discussed in the previous section (Church,
1936a, b, 1937; Turing, 1937, 1938; Post, 1944). Crucially, this approach allows for
the unambiguous specification of the set of requirements for a specific cognitive
theory, by focusing on the fundamental primitives of the cognitive ability under
study characterized in terms of functions from a particular input to a corresponding
output. The rest of this section is dedicated to intuitively illustrate these ideas about
linguistic complexity and their relevance to the formulation of cognitively sound
theory of language.

The Chomsky Hierarchy

The best known formal language theoretical concept in linguistics is probably that of
the so-called Chomsky-Schützenberger Hierarchy (Chomsky, 1959). Under this
view, languages are characterized as unbounded sets of strings, constructed from a
finite vocabulary (or alphabet) Σ, and well-formed according to some underlying
property. For example, one could imagine a language La that only allows sequences
of a:

La≔ a, aa, aaa, aaa, . . .f g

The properties of a language are fully encoded in the (finite) grammar that can
generate it (Chomsky, 1959; Post, 1944). According to the computability thesis,
every grammar can be viewed as a function, so the focus turns to the properties of
particular types of functions. Such a function may map strings to binary values such
as 0 or 1. One could also consider other functions that take strings as input and return
various values, depending on the desired properties of the grammar under study. For
example, a grammar can be made stochastic by replacing the binary mapping with a
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mapping to real values between 0 and 1, or to represent linguistic transformations by
changing strings to strings, or strings to trees, and so on (see Table 1).

The use of such string sequences is not a claim that the literal content of linguistic
experience is a string. However, this notion of generation presupposes a mapping
between the strings belonging to a language and specific structural descriptions with
respect to a grammar.

For a class of grammars to have linguistic interest, there must be a procedure that assigns to
any pair (σ,G), where σ is a string and G a grammar of this class, a satisfactory structural
description of the string σ with respect to the grammar G. In particular, the structural
description should indicate that the string σ is a well-formed sentence of the language
L(G) generated by G, where this is the case. If it is, the structural description should contain
grammatical information that provides the basis for explaining how σ is understood by the
speakers who have internalized the grammar; if it is not, the structural description might
indicate in what respects σ deviates from wellformedness. (Chomsky & Schützenberger,
1959, p. 119)

Thus, this approach highlights fundamental properties of the language patterns in
terms of formal requirements on their generative devices, and has been extensively
adopted in the attempt to define the class of possible natural languages. In this
respect, the Chomsky-Schützenberger Hierarchy characterizes linguistic

Table 1 Grammars as functions. (Adapted from Rawski and Heinz (2019))

Function Description Linguistic Correlate

f : Σ! ! {0, 1} Binary classification (Well-formedness)
f : Σ! ! ℕ Maps strings to numbers (Well-formedness)
f : Σ! ! [0, 1] Maps strings to real values (Gradient classification)
f : Σ! ! Δ! Maps strings to strings (Single-valued transformation)
f : Σ! ! P Δ!ð Þ Maps strings to stringsets (Multi-valued transformation)

Fig. 1 The Chomsky Hierarchy (including mildly context sensitive languages), and classical
placement of linguistic sub-modules
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dependencies in a hierarchy of nested regions based on the complexity of their
grammars (Fig. 1).

The Chomsky Hierarchy as originally formulated distinguishes four regions of
complexity – recursively enumerable, context-sensitive, context free, and regular –
based on the constraints put on the types of grammars that each region allows.
Recursively enumerable languages (also, computably enumerable) correspond to
those languages that can be defined by a Turing machine (see Turing (1937) for the
original formulation, and Hopcroft et al. (2001) for a technical but accessible
introduction). While the debate on the relevance of Turning machines to cognitive
science and theory of mind is vast (McCulloch & Pitts, 1990; Piccinini & Bahar,
2013; Pylyshyn, 1984; Putnam, 1967; Sprevak, 2010, a.o.), this particular class
seems to be of little interest from the perspective of establishing a cognitive theory
of human linguistic abilities, as all languages that can be defined by some formal
grammar fit into it. Given this generality, recursively enumerable languages offer the
weakest (almost trivial) condition to the complexity allowed to natural language, and
thus lack a precise specification of essential computational requirements.

[This] condition, on the other hand, has no interest. We learn nothing about a natural
language from the fact that its sentences can be effectively displayed, i.e., that they constitute
a recursively enumerable set. The reason for this is clear. Along with a specification of the
class F of grammars, a theory of language must also indicate how, in general, relevant
structural information can be obtained for a particular sentence generated by a particular
grammar. (Chomsky, 1959, p. 138)

A more interesting class in connection to the study of natural languages has been,
historically, that of context-free languages. Context-free languages (CFL) can be
recognized by a context-free grammar, which inherently imposes some kind of
hierarchical organization on the string. It is possible to decide whether a string
belong to a CFL or not via a specific machine called pushdown automaton (PDA;
automata in the plural). A PDA is a machine equipped with a finite number of states,
and enriched with a memory mechanism knows as a stack which keeps track of
information about the string. The information in the stack guides the transitions of
the machine, together with the current state and information from the input.

Figure 2 represents a PDA with two states: q0 and q1. Of these, only q1 corre-
sponds to an ending state (double circled): the machine succeeds in recognizing a
string σ, iff it is in an ending state when the last symbol in σ is received. Arrows
between states symbolize possible transitions. These are annotated as x, y/z, such that
x represents the symbol that triggers the transition (e.g., from q0 to q1). Stack usage is

q0 q1
x, y  z

Fig. 2 Graphical representation of a generic pushdown automaton
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instead represented by y/z: in order to transition the top of the stack needs to match y,
which is then replaced by z.

A classical example of a CFL language is anbn – which only allows for a
contiguous sequence of a’s, followed by a contiguous sequence of b’s of exactly
the same length (i.e., the number of a’s and b’s must be identical and equal to n,
where n is an arbitrary integer). A PDA that accepts all and only the strings in this
language is in Fig. 3, where ε represents the empty string. The idea is that the
machine stays in q0 as long as the input string contains a’s, and uses the stack to keep
track of how many of these it sees. The first b then acts as a trigger, and the PDA
keeps accepting b’s only as long as the stack contains a’s to match them off.

Consider now the class of regular languages. These are languages that can be
described by machines consisting only of a finite number of internal states: finite
state automata (FSA). These devices can only keep track on a limited amount of
information, and thus they cannot recognize languages with patterns that rely on
information about the full length of a string. For instance, consider the FSA in Fig. 4.
This automaton recognizes strings belonging to the language ambn: that is, a contig-
uous number of a’s followed by a contiguous number of b’s. Importantly, in contrast
to the CF language anbn, here there is no need to keep track of how many a’s and b’s
are in the string. All the device needs is the ability to recognize that once a b is seen
in the string, no a is allowed to follow – thus, these devices rely on limited, local
memory of recent events in order to make decisions.

The expressivity of the machines associated to each level of the Chomsky
Hierarchy has been used extensively to debate the positioning of linguistic depen-
dencies with respect to regions of complexity. For instance, Chomsky (1957) argued
that the syntax of English’s center embedding constructions cannot be captured by
finite state devices, an argument which would then place the upper bound for the
expressivity of English syntax beyond regular (in fact, syntactic dependencies in
natural language have since then been placed even outside the CF region, see, e.g.,
Shieber, 1985; Kobele, 2006, a.o.). Similar complexity claims can be made for other

Fig. 3 A pushdown automaton for the language anbn

q0 q1
b

a b

Fig. 4 A finite state automaton for the language ambn
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domains of linguistics (Karttunen et al., 1992; Kaplan & Kay, 1994, see Fig. 1). Note
that this reference to linguistics domains should not be interpreted as making any
commitment to the modularity of linguistic cognition, as it is merely referring to the
study of different types of linguistic data (cf. Fodor, 1983).

While a detailed discussion of the accuracy of these claims is beyond the scope of
this chapter, complexity characterizations outlined by the Chomsky hierarchy allow
researchers to draw a connection between attested linguistic patterns and the expres-
sivity of the machinery that can be used to evaluate them. In doing so, these classes
provide a measure of descriptive adequacy for linguistic theories based on the
typology of observed linguistic phenomena. In fact, these complexity claims have
direct consequences for any theoretical framework that affirms domain-specific
generalizations – if we aim for theories that are both sufficiently expressive and
restrictive enough to account for existing natural language patterns and nothing else.
That is, it is desirable to have theories that account for the distribution of linguistic
patterns across natural languages and that do not predict the existence of unattested
patterns.

Consider for instance the case of theories of phonology – for example, Optimality
Theory (OT) – evaluated against the assumption that phonological transformations
from underlying to surface forms are regular (Kaplan & Kay, 1994). Under this
view, the regular region sets up an upper bound to the computational expressivity of
phonology: that is, we do not expect to find natural language phonological patterns
that require supra-regular machinery. In this sense, a certain amount of work has
been done to translate OT grammars to regular relations, showing that the interaction
of very simple OT constraints can yield non-regular patterns (Frank & Satta, 1998).
If one subscribes to the idea that a theory that is over-expressive is undesirable,
complexity characterizations then highlight the shortcomings of OT, and may
suggest ways in which the theory could be restricted in order to reduce over-
generation.

From a cognitive perspective however, the reader might still be (reasonably)
wondering whether such an approach is offering us any truly valuable insight. Do
the formal characterizations outlined so far allow us to make any precise conjecture
about cognitive mechanisms? In fact, there are several reasons to believe that the
Chomsky hierarchy as presented so far is too opaque to make precise claims about
essential attributes of linguistic cognition (Rogers & Pullum, 2011; Jäger & Rogers,
2012; Rogers et al., 2013). One of the main shortcomings of the division in regions
as discussed above is the fact that it presupposes very specific types of recognition
mechanisms (grammar, automata, etc.):

Classes of the Chomsky hierarchy provide a measure of the complexity of patterns based on
the structure of the mechanisms (grammars, automata) that can distinguish them. But [. . .]
these mechanisms make judgements about strings in terms of specific analyses of their
components. When dealing with an unknown mechanism, such as a cognitive mechanism of
an experimental subject, we know nothing about the analyses they employ in making their
judgements, we know only that they can or cannot make these judgements about strings
correctly. (Jäger & Rogers, 2012, p. 1961)
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What does this imply? Consider again the case of a PDA for context-free
languages. By characterizing the anbn language in terms of a PDA, one could be
tempted to assume that a memory stack is needed in order to recognize such
language, and thus set it up as a cognitive primitive. However, there are multiple
alternative mechanism that can recognize that language, which have little in common
beyond the general idea that keeping track of information about the length of a string
is required to distinguish patterns in the language. What seems necessary as a good
basis for a fruitful investigation of the relation between computational complexity
and linguistic cognition is a way to isolate essential properties of a pattern that must
be detected by any device able to recognize such a pattern – while also minimally
separating it from properties of patterns of different complexity. These desiderata
seem in line with the call to theory development in psychology as described, for
example, by van Rooij and Baggio (2021):

Generally, psychological theories of capacities should be (i) mathematically specified and
(ii) independent of details of implementation. The strategy is precisely to try to produce
theories of capacities meeting these two requirements, unless evidence is available that this is
impossible, e.g., that the capacity cannot be modeled in terms of functions mapping inputs to
outputs. (van Rooij & Baggio, 2021, p. 7)

Note that the second argument does not imply uninterest in the connection
between abstract cognitive processes and their physical implementation. What it
remarks instead is the importance of isolating core primitives of the mental abilities
under study, that must necessarily be relevant to any system implementing them.
These issues are addressed by focusing on descriptive characterizations of complex-
ity classes (Rogers & Pullum, 2011).

Beyond the Chomsky Hierarchy: Subregular Languages

Recent formal language theoretical work on the expressivity of linguistic patterns
has focused a fine-grained hierarchy of sub-classes which regular languages can be
divided into (McNaughton & Papert, 1971; Brzozowski & Knast, 1978; Eilenberg,
1974; Pin, 1986; Thomas, 1997). Crucially for the points made above, languages in
this subregular hierarchy have been characterized in terms on logics, highlighting
those properties of a pattern that do not depend on the structure of specific recog-
nition mechanisms (see Fig. 5). These are descriptive characterizations that focus on
the information necessary to distinguish strings (or, more generally, structures) that
present a certain pattern from strings that do not (Rogers & Pullum, 2011). As the
hierarchical classification is based on this type of fundamental information, any
device able to recognize members of a class will have to be at least sensitive to such
information. Moreover, subregular languages have been extensively studied from a
variety of alternative perspectives – including those of grammars and automata.
Thus, although they do not presuppose any particular recognition mechanism, they
provide abstract characterizations of possible mechanisms that allow generalizations
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about the cognitive processes involved in the recognition of specific patterns over
others.

Overviewing the abundance of work leveraging subregular classes for detailed
analyses of linguistic patterns is beyond the scope of this chapter (but see Heinz &
Idsardi, 2013; Chandlee, 2014; Heinz, 2018; Jardine, 2015; McMullin, 2016; Graf,
2017; Aksënova et al., 2016; Strother-Garcia, 2019; De Santo & Graf, 2019; Graf &
De Santo, 2019; Vu, 2020, a.o. for an overview of results across linguistic domains).
Here the interest is in exemplifying how this classification emphasizes core proper-
ties of linguistic dependencies. A formal introduction to the properties of all sub-
regular classes is thus burdensome and not necessary, as a purely intuitive
understanding of the properties behind the simplest of such classes should be
sufficient to outline the main insights of the approach.

Consider Strictly Local (SLk) languages, at the base of the hierarchy. These
languages comprise patterns that exclusively rely on symbols immediately adjacent
to each other in a string. An SLk language can be fully defined by a finite set of
allowed (or disallowed) contiguous substrings of symbols of length k. For instance,
the string abcd contains the following substrings of length 2: ab, bc, and cd. To
understand how this can be applied to the study of linguistic patterns, consider now
the phenomenon of intervocalic voicing in Northern Italian. In this variety, the
alveolar fricatives [s] and [z] occur in what is known as complementary distribution:
only [z] can occur within two vowels (Bertinetto & Loporcaro, 2005). Thus casa
(home) can only be pronounced as [kaza] and not [kasa]. This can be captured by
forbidding sequences of three symbols, where [s] appears within two vowels:

Regular Monadic
Second-Order Logic

Locally
Threshold Testable Star Free

First-Order
Logic

Locally
Testable

Piecewise
Testable

Propositional
Logic

Strictly
Local

Strictly
Piecewise

Conjunction of
Negative Literals

Substring Subsequence

⊂ ⊂
⊂⊂

⊂

⊂

TSL⊂

com
plexity

Fig. 5 Classes in the subregular hierarchy, aligned according to their subsumption relations,
sensitivity to adjacency vs precedence, and corresponding logical definability, following (Heinz,
2018)
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Assuming that the vowel inventory of the language is Σ ¼ {a, e, i, u, o}, the
pattern is fully licensed by listing all the trigrams (contiguous substrings of length 3)
that are forbidden from occurring within a string of the language:

Lvocalic ¼ asa, ese, isi, oso, usu, ase, asi, aso, asu, esa, . . .f g

Note that here the vowels are treated as independent symbols in the alphabet, but
it would be equally possible to list trigrams that refer to more abstract properties of
such symbols (e.g., being a vowel). What is crucial is that whatever cognitive
mechanism is in charge of distinguishing [kaza] from [kasa] only needs to keep
track on three adjacent symbols at the time. Generally, the core information a system
sensitive to SLk patterns needs to capture is immediate adjacency between k symbols
in a string (its k-factors). Sensitivity to substrings of finite length distinguishes
strictly local languages from other classes in the hierarchy, as for example those
that rely on precedence instead of adjacency between symbols.

Strictly piecewise (SPk) languages distinguish patterns based on subsequences of
symbols of length k: that is, k symbols within a string, with arbitrary intervening
material between them (Fu et al., 2011). Consider again the string abcd. The sub-
sequences of length 2 in it are: ab, bc, and cd, ac, ad, and bd. While SL languages
can easily describe a variety of local phenomena in natural languages (like the
voicing example described above), human languages present an abundance of
nonlocal patterns (also commonly referred to as long-distance dependencies). For
instance, Aari (an Omotic language of south Ethiopia) shows a case of unbounded
sibilant harmony: sibilants within a word must agree in anteriority, independently of
which other symbols occur within them (Hayward, 1990). This pattern is clearly
outside of the expressivity of SL languages, as it is based on the relations between
nonadjacent symbols. SP languages can easily account for such a phenomenon
however, by relying on precedence relations between segments – for instance, by
forbidding the occurrence of [ʓ] followed by [s] anywhere else in the string
(so banning *ʓs as a subsequence).

As in the case for the local processes captured by SL languages, the ability to keep
track of finite-length subsequences is the necessary component of any mechanism
able to detect strictly piecewise patterns.

The fine (and growing) granularity of the hierarchy also allows for a variety of
distinctions that could be missed otherwise. Consider once again the nonlocal pattern
in Aari. A different way of characterizing it is via the class of tier-based strictly local
(TSL) languages (Heinz et al., 2011). This class has no access to the precedence
operator, as in SP languages. How can it then capture dependencies between non
adjacent segments? The intuition is that the class relies on a notion of relativized
locality: a TSL dependency is a dependency that is nonlocal in the input string, but
local over a special structure called a tier. A tier is defined by considering only a
subset of the segments of the input string as relevant, and then evaluating strings
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based on substrings of length k allowed (or, alternatively, not allowed) on the tier.
For Aari, it is possible to enforce long-distance sibilant harmony (in anteriority) by
projecting from the input a tier T that only contains sibilants, and ban adjacent *ʓs
and *sʓ on T.

The reader might now wonder if the existence of equivalent characterizations of
long-distance harmony defeats the whole purpose of this section, as it seems to bring
us back to multiple alternatives for the same process. Note however that the
difference between TSL and SP is deep. In order to understand how, assume that
in Aari the harmony requirement stands unless there is an [r] occurring somewhere in
the string between the two sibilants (i.e., [r] acts as an harmony blocker). Under a
TSL analysis, this can be captured by making [r] a tier segment, thus disrupting
immediate adjacency between the sibilants. However, SP languages are unable to
capture this, as ʓs is a subsequence in the string independently of which segments
intervene between the two symbols.

Thus, while TSL and SP share some of the patterns they can encode, they do so in
fundamentally different ways. Understanding the trade-off between TSL’s relativ-
ized locality and SP’s use of precedence makes it possible to once again conceive of
patterns that unambiguously belong to one class or the other. Characterizing local
and nonlocal patterns in terms of SL, SP, or TSL languages then allows for the study
of properties of these patterns without a priori assumptions about the structure of the
cognitive mechanisms that distinguish them.

Importantly, as mentioned a few times before, this is an approach that relies on the
exploration of attested linguistic phenomena in order to establish an upper bound to
the complexity of natural languages. That is, claiming that natural language phonol-
ogy has the expressive power of TSL languages does not imply that every phono-
logical dependency has to be TSL – there could be an abundance of SL patterns – nor
that every conceivable TSL pattern should be attested. It is instead a claim about the
general properties of the language system, which allows to make precise predictions
about what kind of patterns should not be expected (e.g., patterns that require the full
power of regular languages). A common objection to this type of approach is that not
every human language has been studied in detail, and that it is unreasonable to make
generalizations based on patterns that have not been encountered. For example,
McCollum et al. argue that “naive estimates of frequency counts or literature reviews
are not a reasonable evidential basis for concluding that a particular type of phe-
nomenon is categorically Impossible” (McCollum et al., 2020, p. 23). To approach
this issue from a different perspective, consider now a somewhat extreme case: flying
pigs. While the modern taxonomy of animal species is vast, it is hard to claim that we
have categorized every species ever existed (in fact, novel species keep being
“discovered”; McGregor et al., 2020). However, the cumulative understanding of
Earth’s biodiversity makes a theory which discards the possibility of a species like
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flying pigs more plausible than a theory which assumes every conceivable species
just waiting to be found. Note that the more constrained theory is also the one that
would be more informative should flying pigs actually exist, as it predicted their
nonexistence based on a precise set of biological/evolutionary constraints. The
limited nature of the data available to an observer in order to formulate a compre-
hensive theory is thus a problem common to all empirical investigation.

The problem that we cannot deduce (or even straightforwardly induce) theories from data is
a limitation, or perhaps an attribute, of all empirical science [. . .] Still, one may abduce
hypotheses, including computational-level analyses of psychological capacities. Abduction
is reasoning from observations (not limited to experimental data; more below) to possible
explanations [. . .] It consists of two steps: generating candidate hypotheses (abduction
proper), and selecting the “best” explanatory one (inference to the best explanation). (van
Rooij & Baggio, 2021, p. 9)

The ability to formulate hypotheses from available observations that then lead to
explanatory predictions is, as discussed above, a core component of any plausible
theory of cognitive capacities. In this sense, the goal of the formal approach outlined
here is not to rule out phenomena as categorically impossible. A formal analysis of
attested patterns in terms of their complexity serves to make precise, explanatory
generalizations about expected empirical phenomena. Should a phenomenon that
exceeds a formerly assumed upper bound arise, it would have no consequence of the
characterizations of previously encountered phenomena, and it would directly point
to what kind of information was deemed to be beyond the scope of the theory by the
previous upper bound.

Finally, while the discussion so far has focused on leveraging typological data
about linguistic patterns to formulate analyses in terms of their formal complexity,
the claim is that such characterizations inform our idea of language and cognition. It
is thus reasonable to wonder whether and how these characterizations are reflected in
linguistic behavior (Reber, 1969; Levelt, 2020; Uddén et al., 2020; Fitch & Hauser,
2004; Öttl et al., 2015). A shift from typology to behavioral experiments would also
offer observations about complexity patterns that are distinct from typological
attestation. In this sense, a possible hypothesis is that more complex patterns should
lead to longer processing time – as exemplified, for instance, by self-paced reading
experiments (cf. Chesi & Moro, 2014, 2015). Importantly however, there is nothing
in the formal arguments per se that support such a hypothesis, as theories of
processing have once again to make assumptions about the structure of the under-
lying mechanism. A different route is to instead investigate how the boundaries
assumed by different formal classes influence humans’ abilities to learn patterns of
different complexity. The rest of the chapter is thus focused on exploring the
relations between complexity bounds and learning hypotheses, and discuss how
the fine-grained insights of the subregular hierarchy can inform experimental explo-
rations of human cognitive biases.
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Formal Theories of Grammar Learning

In the section “Mathematical Theories of Language and Cognition,” the general
problem of induction was posed as a facet of the general mathematical study of
cognition. Learning theories provide rigorous definitions of what learning means and
ask, under those definitions: What can be learned, how so, and why? In this respect,
determining which definitions are “correct” or “best” for a given scenario is a core
issue.

Learnability results are foundationally important results for all branches of
language science, because they are independent (yet characteristic) of particular
theories and perspectives. Specifically, learning theories provide nontrivial condi-
tions of explanatory adequacy on any theories of natural language.

For a class of languages to be the natural languages, the class must be learnable by children
on the basis of the kind of linguistic exposure typically afforded the young. Call this the
learnability condition on the class of natural languages. Formal learning theory is an attempt
to deploy precise versions of the learnability condition in the evaluation of theories of natural
language. In the present context, such a theory will specify (a) the kind of linguistic input
available to children, (b) the process by which children convert that experience into
successive hypotheses about the input language, and (c) the criteria for “internalization of
a language” to which children ultimately conform. From (a)-(c) it should be possible to
deduce (d) the class of languages that can be internalized in the sense of (c) by the learning
mechanism specified in (b) operating on linguistic input of the kind characterized in (a).
Such a theory is correct only if (d) contains exactly the natural languages. (Osherson &
Weinstein, 1983, p. 37)

What makes a class of languages learnable? These results have permeated almost
every theory of language, and indeed every problem of learning related to structure.
This section presents a well-known evaluation framework and discusses its exten-
sions and consequences. Readers interested in an in-depth discussion of these results
may refer Heinz (2016) and Niyogi (2006), as well as Heinz and Rawski (forthcom-
ing) for a history of learnability in linguistics.

Membership Problems

Central to a mathematical formulation of language learning, as Niyogi (2006) notes,
is that children are not exposed directly to grammar. They get “exposure to the
expressions of their language, along with extragrammatical and nonlinguistic cues,
yet they reliably acquire a grammar that provides a compact encoding of the ambient
language they are exposed to in a particular linguistic community.” Mathematically,
this basic question of whether some expression in a language is well-formed
according to a given grammar is called the membership problem.

The concept of the membership problem allows us to clearly formulate a defini-
tion of learning. In particular, is there a learning algorithm Awhich takes as input a
finite subset of data D of the possible acceptable forms of a language S, and returns a
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grammar which solves the membership problem M for the target language? Formal-
izing in this way means that each of the objects A,D,S,M can be studied indepen-
dently or in combination with the others, at various levels of abstraction. It is always
crucial that learners acquire a grammar, not a language. This is simply because,
mathematically, grammars are of finite size, while the extensions of the grammars
may be functionally infinite in size.

Under this inductive view, learners are functions from experience to grammars,
which are themselves functions. This characterization of learners is precise but
broad, since any inductive learning procedure is a function from experience to
grammars. Mirroring the discussion in section “Mathematical Theories of Language
and Cognition,” this includes connectionist (Rumelhart & McClelland, 1986),
Bayesian (Griffiths et al., 2008), and innatist (Wexler & Culicover, 1980; Berwick,
1985; Niyogi, 2006) approaches, among others.

Learning theory is also concerned with “the circumstances under which these
hypotheses stabilize to an accurate representation of the environment from which the
evidence is drawn. Stability and accuracy are conceived as the hallmarks of learn-
ing” (Osherson et al., 1986). How difficult is it for a learner to arrive at a general-
ization, and what role does the evidence a learner receives play? There are several
general statements one can make (Heinz, 2016). Learners exposed only to positive
evidence (only elements of the target language) have a harder task than those given
both positive and negative evidence (both elements in and outside of the language).
Learners having access to inaccurate, mislabeled, or “noisy” evidence have a harder
task than those given accurate evidence. Learners who may query an oracle or
teacher about acceptability of a form have access to more information than those
who cannot. Requiring that a learner exactly selects the right target grammar is a
stricter condition than requiring them to select an approximately correct target
grammar (see Heinz, 2016, for further discussion on the variety of learning para-
digms and their consequences for theories of cognition).

Enumeration and Universal Grammar

Does every possible language have a solution to the membership problem? As the
reader may have already intuited, another consequence of the computability thesis is
that most languages have no solution to the membership problem. Why can a learner
not just entertain any possible grammar, moving one by one until a grammar is
selected which works?

This problem may be formulated concretely by understanding enumeration. A set
S is enumerable, or countable, if its members can be arranged in an ordered list where
each member will eventually be encountered. Formally, there is a function f which
maps positive integers to members of S such that f is onto, that is, for every element
s in the co-domain there is some x in its domain such that f (x) ¼ s. For example,
consider this list of natural numbers:
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1, 2, 3, 4, 5, 6, . . .

Every positive natural number in the list will appear in some finite amount of
time. Every element can be enumerated – a number can be assigned to it by a
function which gives the value n to each positive nth integer. Now consider a
different list of natural numbers:

1, 3, 5, . . . , 2, 4, 6, . . .

For this list, it is impossible to assign an index to any even numbers: they will not
all be encountered in a finite amount of time. In an acceptable list, each item must
appear sooner or later as the nth entry, for some finite n.

It is immediately obvious that the set Σ* of all strings over an alphabet Σ is
enumerable. The usual way to enumerate strings in Σ* is to order them by length and
then alphabetically within strings of the same length, as shown below over the
alphabet Σ ¼ {a, b, c}.

0 ! e
1 ! a

2 ! b

3 ! c

4 ! aa

5 ! ab

6 ! ac

. . .

However, what about languages or stringsets, the subsets of the powerset P Σ!ð Þ?
Recall that a powerset is the set of all subsets of a set S, or the set of all languages in
the case of Σ*. An argument from Georg Cantor (1892) demonstrates that the
powerset of any countable set is uncountable, meaning there is no way to properly
enumerate the members of that set. This has immediate and far-reaching conse-
quences for learnability. Any learning algorithm that solves the membership problem
is of finite length. This means it can be written as a finite string, and is an element of
Σ*. Consequently, there are at most countably many languages S which have pro-
grams which solve the membership problem of S. But there are uncountably many
languages (elements of P Σ!ð Þ), so most languages have no solution to the member-
ship problem. Consequently, any possible learning framework whose target lan-
guage S is non-enumerable, or uncomputable, will never have a solution. The
learning algorithm cannot ultimately return a grammar which solves the membership
problem for S.

It is now apparent that learnable languages must come from a well-defined class,
and that pure tabula rasa learning is impossible. As mentioned previously, this forms
what in the cognitive study of language is often called the “logical problem of
language acquisition.” Necessary, a priori restrictions on the hypothesis class of
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candidate grammars form the requirement of a Universal Grammar. Perhaps the
constraints given by the Chomsky-Schützenberger Hierarchy in the last chapter are
enough of a restriction to ensure learning will succeed, given a particular formulation
of the learning problem. The remainder of the chapter will consider one particularly
influential inductive inference paradigm, Gold’s Identification in the Limit frame-
work (Gold, 1967). There are of course many other frameworks inspired by Gold,
and readers are referred to the overviews mentioned earlier.

Grammar Identification in the Limit

Gold (1967), inspired directly by mathematical linguists’ application of the theory of
computation, introduced the first inductive learnability results for a type of learner
over classes of formal languages. In his framework, learning is a continuous process
unfolding in time with no end. Evidence comes incrementally, and the learning
algorithm incrementally outputs a grammar based on its experience thus far. As time
goes on, the output grammar must be identical and must solve the membership
problem for the target language in order for learning to succeed. The focus of Gold’s
framework squarely puts the problem on generalization: is there a successful learn-
ing strategy given generous input, time, and resources, but where the target must be
met exactly?

More precisely, according to the Identification in the Limit framework there are
no limits on the learner’s computational resources or time, and each input is assumed
to be a finite initial portion of an infinitely long data stream drawn from the target
language S. Learners map the finite pieces of the data stream to grammars. A
particular piece of evidence, or positive presentation, of the target language S is a
function f: ℕ ! S such that f is onto, meaning for every string s � S, there is some
number n � ℕ such that f (n) ¼ s.

Gold’s article also considers evidence of different forms: positive evidence,
positive and negative evidence, and arbitrary/primitive recursive evidence. Positive
evidence (often called positive data) for a formal language S is such that every
element of S can be observed at least once. Positive and negative evidence includes
every logically possible string in Σ* at least once, along with a label indicating
whether it belongs to the target language S or not, similar to what is today called
supervised learning. Primitive recursive evidence is beyond the scope of this
chapter.

Consider the case of positive evidence. The learner initially has no input evi-
dence, no cumulative evidence, no grammar, and thus no language. At the first time
point, the learner gets evidence e(1) as a positive presentation from the target
language. The list of cumulative evidence he(1)i, or the finite portion of the data
stream seen thus far, updates to include this new evidence. The grammar G-
(1) updates to incorporate the new evidence according to the constraints of the
grammar. Since the grammar is updated, the language (or extension) of the grammar
L(G(1)) may or may not change. This process continues for each new data point, so
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evidence e(n) to time n results in cumulative evidence he(1), e(2), . . ., e(n)i which
forms Grammar G(n) whose extension is L(G(n)).

What constraints are placed on the learner by this framework? First, success for a
learning algorithm means that it converges over time to a correct generalization. As
the learner encounters successive data points from this stream, it generates a
corresponding stream of hypothesis grammars. In this framework, a learner is said
to converge to a grammar G if at some finite point, every future hypothesis it
generates from new data is exactly G. The learner is said to identify a language in
the limit if G generates the target language for any sequence of data from the target
language. The learner is said to identify a class of languages if it identifies in the limit
every member language of the class. Readers are referred to Niyogi (2006) for a
description of Probably Approximately Correct (PAC) learning in this setting. In
particular, at some time point n, the algorithm must output the same program and this
program must solve the membership problem for the target set S. The second point,
which follows naturally, is that the algorithm can make finitely many mistakes when
generalizing, even though there is no bound on the number of inputs the learner
receives.

When evaluating algorithms against criteria like identification in the Limit, it is
important to remember that the algorithm exists independently of the evaluation
criteria. Frameworks like Gold’s are a way to understand the behavior of the
algorithm generally. Gold’s (1967) work derives several important results from
these constraints, both positive and negative. A learner exists which identifies the
class of finite languages in the limit from arbitrary positive evidence. However, this
is not the case for super-finite classes of languages, which include all finite lan-
guages and at least one infinite language. There is no learner which can identify any
super-finite class in the limit from arbitrary positive evidence. The major conse-
quence of this result is that none of the traditional classes of the Chomsky hierarchy
(Regular, Context-Free, or Context-Sensitive) as discussed before are identifiable in
the limit from positive data following this paradigm. However, learners who have
access to positive and negative data are able to learn any of the computable
languages (see Heinz, 2016, and references therein).

Building on the work of Gold, Heinz (2010) considered a class of hypothesis
grammars known as string extension grammars, which are finite subsets of some set
A. This means they include the Strictly Local, Strictly Piecewise, and other sub-
regular grammar classes. The class of languages they generate are determined by a
function f which maps strings to finite subsets of A (chunks of grammars). Since the
size of the canonical grammars is finite, a learner which develops a grammar on the
basis of the observed forms and the function f identifies this class in the limit from
positive data. Heinz called learners inducing these grammars String Extension
Learners because each string in the language can be mapped or “extended” to an
element of the grammar, which in every case, is conceived as a finite set of elements.
Later, Heinz et al. (2012) generalized the finite subsets of the set A to be elements in a
lattice, and showed that such “lattice-class” learners can be identified in the limit, and
are incremental, globally consistent, locally conservative, and set-driven, and
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strongly monotonic, making them also learnable in the Probably Approximately
Correct sense.

Learning K-Strictly Local and K-Strictly Piecewise Languages

The failure of Identification in the Limit frameworks to learn major classes of the
Chomsky-Schuützenberger Hierarchy is a major negative result. Does this mean that
natural languages are not learnable in this way, or that Gold-style learning is
irrelevant for language? No. Recall the previous section’s lesson that the class of
natural languages is often structured according to specific properties. Just as the case
with computable enumeration, further structuring the hypothesis class available to a
learner often enables Identification in the Limit to succeed, particularly for classes
which more closely fit the types of linguistic patterns. This is the case with the k-
Strictly Piecewise and k-Strictly Local classes discussed in the previous section.

The Strictly Piecewise case is easy to show with an illustrative example. Let Σ ¼
{a, b} and consider the positive 2-Strictly Piecewise grammar consisting of the set
of allowed subsequences G ¼ {λ, a, b, aa, ab, ba}, with λ being the empty string.
Then the language of the grammar L(G) ¼ Σ!\(Σ!bΣ!bΣ!). This language allows
any string which does not contain two b’s even when they are arbitrarily far apart,
just like the sibilant harmony example discussed in section “Formal Language
Theory and Cognitive Theories of Language.”

Intuitively, a successful learning algorithm over this language is straightforward.
The learner, a priori possessing the concepts of the k-value of 2 and the notion of a
subsequence, extracts the length-2 subsequences from each piece of evidence e(t)
presented to it, and successively updates their grammar G(t) accordingly. Since for
each Strictly k-Piecewise language there is a finitely sized grammar of k-subse-
quences that will identify the language, there is some point at which new evidence
will not add any new subsequences to the grammar’s current store for new pre-
sentations. Thus, it is guaranteed to Identify in the Limit the target k-Strictly
Piecewise language from positive data. Additionally, this class is String Extension
Learnable as mentioned above.

It is relatively easy to replace the subsequence concept with substring, so that the
learner extracts the k-length substrings of a string, consistent with a k-Strictly Local
grammar rather than Strictly Piecewise. In both cases the properties of the grammar
constrain the type of the membership function the algorithm infers. The k-value is
important, because it parameterizes the susbtrings/subsequences by some number
k corresponding to the window size that the grammar uses to extract information
from a presentation, such that the learner will eventually see all of them. It is for this
reason that, while the Strictly Local and Strictly Piecewise classes are not generally
identifiable in the limit from positive data, the k-Strictly Local and k-Strictly
Piecewise classes are for any k. Thus, a specific set of precise constraints on the
learner allows it to succeed, while other potential restrictions may not.
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Cognitive Lessons from Learning Theory

The preceding section described how an unrestricted learner is unable to learn any
language at all, a more specific case of the logical problem of induction. Restricting
the hypothesis space available to a learner has measurable effects on the learner’s
ability. However, the type of restriction matters. As we saw, some restrictions, like
the major regions of the Chomsky hierarchy, ensure that a learner in a particular
framework will not succeed. In contrast, other restrictions do ensure success, some
with more feasibility than others.

The takeaway is that theoretical choices matter, and evidence matters. Is there
sufficient evidence to suggest that a learner’s hypothesis space necessarily conforms
to some class? If so, then a learning algorithm’s failure on that class under some
framework is evidence that the system is not learning in that way. Conversely, if a
learner demonstrates a behavior of learning consistent with some learning frame-
work, then perhaps the learner’s hypothesis space is consistent with those that the
algorithm is able to learn. Perhaps there is a facet of a learning framework (say
positive and negative data) that is present in a learner, but not others. In this case, it is
up to the scientist to understand the precise relationship between the properties of the
learner and of what is being learned. Understanding such precise relationships is the
domain of computational learning theory. There are many many more learning
frameworks than what is presented here, but in all cases the precision and analytic
guarantees are the focus. Ignorance of the results of computational theories may not
preclude language scientists from getting results, but its inclusion guarantees such
results will be interpretable. The cognitive scientist studying learning of particular
patterns would do well to understand these limits, as the next section demonstrates.

Testing Formal Predictions with Artificial Grammar Learning

Artificial Grammar Learning (AGL, also Artificial Language Learning) has been
extensively used by linguists and cognitive scientists in general to investigate biases
in the acquisition of complex patterns from input observations (Reber, 1967, 1969;
Marcus et al., 1999; Gomez & Gerken, 1999; Gomez, 1997; Goodman, 1997;
Ferman et al., 2009, a.o.). The core idea of an AGL experiment is to familiarize
participants with an artificially constructed mini-language, representative of a spe-
cific pattern under study. As discussed above, assuming that the pattern of interest is
characterized by a grammar G, the full set of strings presenting such a pattern over a
controlled set of symbols (alphabet) can be called L(G). Participants in AGL studies
are presented with a finite subset of L(G), after which they are tested on their ability
to discriminate between string that present the pattern, and strings that do not (see
Fig. 6). While the specific details of the experimental paradigm vary significantly
among studies and can be used to test different formal learning frameworks –
depending, for instance, on whether explicit feedback is provided during an habit-
uation phase, on what kind of observations are provided in input, or how the testing
phase is set up – the general design aims at testing how the input influences
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generalization to novel strings, thus exploring the participants’ ability to internalize
patterns with specific properties.

A common objection to this approach to this paradigm is that the simplified set of
data and the conditions of a laboratory experiment do not truly reflect the complexity
of language acquisition in the real world, thus casting doubts on the usefulness of
AGL results (Braine et al., 1990, a.o.). While the ecological validity of experimental
results is an important concern, it is also true that this is the price paid by any attempt
to investigate human behavior under controlled conditions (DeKeyser, 1997; Ferman
et al., 2009). Once again however, having a theory laid down that is precise in its
assumptions and in its predictions comes to help: when the experimental contrasts
are well-motivated and situated in a formal learning framework, results of AGL
experiments will always have something concrete to tell us about the way partici-
pants interacted with the stimuli. In this respect, the goal of this section is not to
present an in-depth overview of the abundance of work exploring how the hypoth-
eses of formal language theory can be explored in AGL settings, both at the level of
the Chomsky hierarchy, and at the more detailed level of the subregular hierarchy
(Koo & Callahan, 2012; Finley, 2011, 2012, 2017; Lai, 2015; Finley & Badecker,
2009; McMullin & Hansson, 2019; Avcu & Hestvik, 2020, and references therein).
Instead, the aim is to illustrate how subregular characterizations can be used to
improve the design of experiments concerned with investigating structural biases in
language learning, while avoiding some common fallacies of these experiments
(Rogers & Pullum, 2011; Jäger & Rogers, 2012; Rogers et al., 2013; De Santo,
2018; De Santo & Rawski, 2020; Wilson et al., 2020; Levelt, 2020; Uddén et al.,
2020).

Learning Nonlocal Dependencies: The Fallacy of Generalization.
Section “Formal Language Theory and Cognitive Theories of Language” already
touched on the contrast between local and nonlocal dependencies between string
symbols. This kind of contrast has been focus of a variety of studies in experimental
linguistics, since long-distance relations are ubiquitous in human languages. One
could, for instance, be interested in investigating the ability of adults to learn such
dependencies compared to children at different stages of development. Or compare

L(G) test

test

training

Fig. 6 Basic setup of an
Artificial Grammar Learning
Experiment
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human learners to other animal species. It is possible to imagine a stimulus set up
comparing, for instance, strings with two immediately adjacent a’s, to strings where
the two a’s are separated by some other symbol. Assuming an alphabet Σ ¼
{a, b, c, d, e}, the training samples could look like the following:

Lloc ¼ abcd, aabcd, baacd, bcaae, . . .f g
Ldist ¼ abacd, bacad, bcada, bcaea, . . .f g

Note however that the pattern exemplified in Ldist is technically still a local
pattern: it can be easily captured by SL trigrams. Thus, if participants to such an
experiment are then tested on novel strings that just put one single symbol in
between two a’s, evidence of the fact that they are inferring nonlocal relations
from the input would be fairly weak. The crucial point here, as in all AGL exper-
iments, is to make sure to set up tests that allow the experimenter to evaluate whether
the input is leading learner to generalize to the right kind of processes. In the case of
long-distance relations, the core property to test is the fact that related symbols can
be at an arbitrary distance from each other. Of course, there are practical limits to the
way this can be tested in a laboratory setting. For instance, testing strings cannot be
arbitrary long, as length of the string is bound to have some effects on behavioral
results that are unrelated to the property under test. However, it is still possible to
target the core property being investigated by increasing the distance between
relevant symbols by one or two extra element with respect to the training set.

Ldist ¼ abcad, abcad, bacda, abcea, . . .f g

This setup is obviously still imperfect, and one could argue that each of the
chosen examples is still a local patter by itself. Importantly though, testing over
dependencies that are longer than the ones observed targets the participants’ ability
to generalize from a restricted input to strings containing the property of interest.

Refining the Question: What Kind of Long Distance Relation? The discus-
sion of long-distance processes in section “Formal Language Theory and Cognitive
Theories of Language” already showed how it is possible to use subregular charac-
terizations to pinpoint fine-grained properties of the patterns under consideration. In
the case of long-distance dependencies, for instance, it is then possible to ask not just
whether learners are sensitive to nonlocal patterns, but what kind of relations
characterize such patterns and not others. Recall the difference between TSL and
SP languages, as outlined in before in the chapter: TSL languages capture
non-locality by recasting adjacency over a subset of a language’s whole alphabet,
while SP languages rely on the precedence operator. Crucially, TSL and SP lan-
guages are incomparable: they do not stand in a precise subsumption relation with
respect to each other. This means that, while there are some patterns that are both
TSL and SP (e.g., the Ldist language from above), there are also patterns that are
exclusively TSL, and patterns that are exclusively SP. The case of sibilant harmony
with blocking already illustrated an exclusively TSL pattern: since SP languages rely
of subsequences to discriminate between well-formed and ill-formed strings, they
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cannot take blockers into account. For an exclusively SP pattern, consider the
language L that consists of all strings over Σ ¼ {a, b, c, d, e} that do not contain
the subsequences ac or bd. For instance, cadeb,cdba,cddddbbbba are strings in L,
but abecd,abedc,addddbbbbc are not. This language is not TSL since, in order to
correctly ban both ac and bd, a, b, c, and d should all be considered as tier members.
But then, a and c would act as blockers for the bd constraint, and vice versa. Given
this clear contrast, it should be possible to set up training sets with artificial
languages that are both TSL and SP, only TSL, and only SP, and compare how
each class affects the learning trajectories and classification errors of participants. In
turn, this could shed light on preferences between adjacency or precedence as
operators as the core of long-distance relations. An understanding of the distinctions
between patterns through subregular lenses thus allows for a refinement of experi-
mental questions even on sets on dependencies that would seem indistinguishable
otherwise.

Two Cases of the Set/Subset Problem. The examples discussed so far should
clarify how important it is to keep the relation between overlapping formal charac-
terizations in mind when picking the training and test sets. In this sense, a common,
crucial fallacy in the design of AGL experiments is related to what is commonly
known as the set/subset problem. Assume that an experiment is set up to explore the
ability of humans to learn context-free languages, and that the core of the experiment
is the anbn languages. As the reader might recall, this is the language of strings
containing an arbitrary number of a’s, followed by a matching number of b’s. It
would seem reasonable to train subjects on a subset of this language, and then test
that they are able to recognize well-formed strings in the language. However,
consider now the (less-powerful) regular language ambn – the language of strings
containing an arbitrary number of a’s, followed by an arbitrary number of b’s. The
reader might notice that strings in anbn are in fact a subset of the strings in ambn (see
Fig. 7a) – the context-free requirement being that a’s and b’s must match. Thus, just

ab
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aaabbb

aaaabbbb
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b

abb aab

aaaabb

aabbbb

abbbaaab
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anbn

(a)
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abcde
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acbde

bcdae

bacde

debca

bcdea
cbade
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Fig. 7 Examples of set-subset relations for (a) the anbn vs ambn contrast; and (b) a free word order
language (Σ*) vs a language only allowing adjacent ab (Lab) given Σ ¼ {a, b, c, d, e}
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observing that a participant recognizes anbn strings as well-formed is not evidence of
the fact that they internalized a context-free pattern. Setting up a contrast set that
checks whether they correctly exclude ambn strings is also crucial. This is a case in
which the set-subset issue can be addressed by being careful about the experimental
design.

Let us consider a second case now. Assume an alphabet of symbols Σ ¼ {a, b,
c, d, e}, and a language Lab, which only allows b after a (but not vice versa) – thus,
Lab would contain strings like ab, acb, abcde. Imagine an experiment focusing on
measuring participants’ preferences for ordered versus unordered sequences (e.g.,
Nowak & Baggio, 2017), setting up as a contrast to Lab a language where the order of
the symbols is completely unrestrained (a free order language). What kind of strings
would this language contain? Strings like ba, bcdea, bacd would be part of the
language but, since there are no constraints on the possible order of symbols, so
would all the strings in Lab (see Fig. 7b). In fact, the unordered language is exactly
Σ* – the collection of all possible strings generated from Σ – and thus there is no set
of strings based on Σ, that is not a proper subset of Σ*. Therefore, while it is
reasonable to train participants on strings from Lab and test them on the contrast
between Lab and the larger Σ*, the opposite (training on Σ*) is by definition
uninformative: Σ* has no distinctive property that can be isolated in such a setting.
In contrast to the previous case then, this example highlights an issue with the
set/subset problem that cannot be resolved with a smart experimental design, but it
instead ruled out directly following the theoretical formalizations. Note that this does
not imply that there are no interesting questions to be asked about how participants
would generalize over Σ* (e.g., would they prefer to impose some kind of constraint
over none?), but highlights how such questions would not immediately follow from
the one that originally motivated the stimulus design.

Subsumption, and the Importance of Conservative Assumptions. As a
specular issue to the one above, it is important to keep in mind that classes in
these hierarchies stand in subsumption relations with respect to each other. For
instance, every regular language is also a context-free language, and every sub-
regular pattern is trivially also a regular one. This means that one could be tempted to
classify a TSL pattern in terms of its regular characterization. However, as discussed
many times in this chapter, what one should strive to keep in mind in the study of
opaque cognitive abilities is the distinction between possible and necessary. Focus-
ing on the weakest class that captures a specific pattern fully allows for clarity about
which primitives are fundamental in order to distinguish such pattern from others –
by formalizing the minimum necessary requirements on transparent properties of the
input – consistently with a theory that strives to make the least possible number of
assumptions about unobserved mechanisms.

Balancing Measures of Complexity. Formal language theoretical notions are
obviously not the only conceivable way to characterize linguistic complexity. A
common alternative is to evaluate patterns (and analyses of such patterns) in terms of
the succinctness of their descriptions (Rissanen, 1983; Grünwald, 1995; Vitányi &
Li, 2000; Hansen & Yu, 2001; Grünwald et al., 2005). For instance, one could
examine the way TSL and SP analyze sibilant harmony based on the dimension of
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the resulting grammars (e.g., measured in terms of banned tokens). While exploring
how succinctness plays a role in human cognition is by itself a worthwhile enter-
prise, it seems important to highlight how it is not a property of the observed patterns
themselves, but it once again requires assumptions about the mechanism that we use
to encode such patterns – for example, it is a measure imposed on the grammars,
automata, or other means of representation. Crucially then, measures of succinctness
are not in contrast with language theoretical characterizations of complexity, and
could benefit from examining the functional primitives highlighted by, for instance,
the subregular approach.

Relatedly, recall that the characterizations described in this chapter pose as an
object of inquiry an upper bound to the complexity of linguistic dependencies. This
is important to remember when thinking about the intersection of multiple measures
of complexity. As mentioned before, for instance, claiming that phonological depen-
dencies are at most TSL does not imply that every possible TSL pattern should be
attested (see Aksënova et al. (forthcoming)). By characterizing a complexity upper
bound based on what kind of operations are allowed though, this perspective then
opens the road to a more informed exploration of other cognitively grounded
restrictions on language learning (e.g., Heinz & Idsardi, 2013; Aksënova &
Deshmukh, 2018).

Conclusion

The overarching lesson of this chapter is that mathematical characterizations further
the study of language and cognition, by forcing theoretical frameworks to be
specific, analytically transparent, and unambiguous. Approaching linguistic com-
plexity through the lens of formal language theory allowed for a discussion of
different classes in the Chomsky hierarchy, and the implicit assumptions that
accompany them. Importantly, the focus on sub-regular classes served to clarify
how alternative characterizations, while formally equivalent, can offer different
kinds of insights into cognitive mechanisms. For instance, descriptive characteriza-
tions of string languages seem to be more useful in investigating the cognitive reality
of complexity distinctions over grammar or automata characterizations, since they
allow for the study of necessary properties that are tied to the string patterns
themselves.

As discussed, formal language theory has been used extensively to guide the
design and interpretation of Artificial Grammar Learning experiments. Importantly,
in order to design learnability experiments successfully and avoid critical fallacies
that would obfuscate their interpretability, it is crucial to understand the relation
between formal characterizations of the linguistic phenomena under study, and the
formal properties of a learning system. The detailed mathematical specifications
provided by formal languages and learning theory make it possible to evaluate the
validity of a cognitive question as framed in an experimental set-up a-priori, before
(and beyond what is allowed by) data collection (Planck, 1936; Guest & Martin,
2021). The formal rigor guaranteed by this approach makes it possible for formal
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theories to reach explanatory power, beyond their ability to make correct or incorrect
predictions. For instance, AGL experiments have been used in the past not only to
address questions about the relevance of computational distinctions to human (and
nonhuman) language learning (Fitch & Hauser, 2004; Fitch et al., 2012; Öttl et al.,
2015), but also to make claims about possible and impossible dependencies in
natural languages (Moro et al., 2001, a.o.). What is that makes a language possible
or impossible? The claim here is that answering this type of questions becomes
possible when adopting a theoretical framework precisely formalized in all of its
components.

Importantly, this chapter’s focus on string languages is not meant to imply a
disinterest in different types of representations. For instance, tree languages are
notoriously of crucial relevance to the study of human syntax, and formal language
theoretical approaches have shed light on core properties of these representations
(see Hunter, 2021, a.o. for a recent overview). As briefly mentioned before, repre-
sentational assumptions interact in nontrivial ways with complexity characteriza-
tions – so that, for instance, a CF string language corresponds to an SL2 tree
language. This is made even more complicated when focusing on human language,
as hierarchical representations are assumed to be derived from string-like input and
output (i.e., they are hidden in the data). That is to say, it would not be particularly
insightful to probe what kind of trees humans learn for a specific set of sentences, by
training and testing on trees themselves. Thus, if one is interested in studying how
the hypothesis space of specific learners (e.g. humans) is constrained with respect to
the computational expressivity of tree languages, it will be necessary to design
contrast string languages that isolate a specific property of target tree grammars,
while also controlling for possible confounds coming from the process of deriving
trees from string (Fowlie, 2017). This remark is not meant to imply that it is
impossible to derive insights about syntactic representations from AGL experiments
(see, for instance, Culbertson, 2021), but that additional care has to be taken to
disentangle complexity and representational biases within the learning process.

In this sense, the hope of this chapter is that providing readers with a detailed
understanding of the mechanics of formal language theory and learning theory – and
their relevance to the cognitive investigations into linguistic complexity – will
further fruitful collaborations between cognitive scientists and mathematically
inclined linguist and psychologist.
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