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Abstract
Various notions of plausibility are used in cognitive science to argue for or against the “goodness of theories.” However, 
plausibility remains poorly understood and difficult to analyze. We review debates in the philosophy of science on uses of 
plausibility in the assessment of novel scientific theories as well as recent attempts to formalize, reform, or eliminate specific 
notions of plausibility. Although these discussions highlight important concerns behind plausibility claims, they fail to iden-
tify viable notions of plausibility that are sufficiently different from other criteria of “good theory,” such as prior probability 
or external coherence. We survey uses of plausibility in linguistics and cognitive science, confirming that plausibility is often 
a proxy for other criteria of good theory. We argue that the need remains for concepts of plausibility that can be employed 
to assess the quality of proposals at the early stages of theory development when other criteria are not yet applicable. We 
identify two such notions: one relating to formal constraints on theories and another capturing initial epistemic consensus, if 
not necessarily convergence on the truth, about the target system in a community of inquiry. We briefly assess the specificity 
and added value of these notions of plausibility relative to other criteria for good theory.
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Introduction

Cognitive scientists often use notions of plausibility — com-
putational, cognitive, neural, biological, etc. — to evaluate 
theories, models, or hypotheses. Plausibility considera-
tions are seldom accompanied by definitions and metrics 
(in contrast with, e.g., probability), and absolute claims (“X 
is plausible”) tend to prevail over comparative judgments 
(“X is more plausible than Y”). Plausibility is frequently 
used as a substitute or an umbrella term for wonted criteria 
of the “goodness of theories,” like verisimilitude, empirical 
adequacy, or external coherence. What is plausibility, and 
what functions can it serve in cognitive science?

Here, we speculate that the usefulness of epistemologi-
cally autonomous notions of plausibility, as distinct from 
other standards of “good theory,” is a function of knowledge 
of the target system available at a given stage of inquiry. 
Simplifying, the more is known about a system, the more 
one can rely on standard criteria to evaluate theories, mod-
els, or hypotheses, and the less profitable it is to appeal to 
plausibility as such. In particular, the development of theo-
ries renders concepts like internal coherence and prior prob-
ability applicable; experimental research programs make 
available criteria such as verisimilitude, empirical adequacy, 
or posterior probability; discoveries from adjacent research 
fields make notions of external coherence relevant. In those 
circumstances, plausibility considerations typically boil 
down to informal judgments involving exclusively or largely 
one or more of the standard criteria. Conversely, when little 
is known about the target system and when formal theories, 
models, and hypotheses are not yet available or are only 
then being set up, the standard criteria may not be appli-
cable: there are no theoretical constructs yet to be evalu-
ated for empirical adequacy, internal or external coherence, 
verisimilitude, prior or posterior probability, etc., but the 
need remains to assess early stages of theory development. 
Plausibility, suitably construed, may serve precisely this 
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function. The question then becomes how to characterize 
plausibility, such that it can assist us in evaluating, compar-
ing, and selecting theories, models, or hypotheses when the 
standard goodness-of-theory criteria are not yet applicable. 
We hope to convince readers of the importance of this ques-
tion, regardless of how one then proceeds to answer it.

We also hope to get the discussion started on specific con-
cepts that could do the job. We will identify two candidate 
notions of plausibility: one relating to formal arguments of 
theoretical invariance and computational tractability of cog-
nitive functions; another capturing initial epistemic consen-
sus, if not projected future convergence on the true or final 
theory, about the target system by a community of inquiry. We 
will discuss these notions in greater detail in sections “Invari-
ance and Tractability: Plausibility and Formal Theory” and 
“Community and Inquiry: Logic and Pragmatics of Plausi-
bility.” Before we get there, we will provide a tentative char-
acterization of early theory (“Early Theory: A Partial Case-
Based Typology”) and then revisit some debates on and uses 
of plausibility in the philosophy of science (“Plausibility in 
the Philosophy of Science”) and in linguistics and cognitive 
science (“Plausibility in Linguistics and Cognitive Science”).

Early Theory: A Partial Case‑Based Typology

Traditionally, the objects of primary interest for philoso-
phy of science have been “our best theories” or in any case 
“mature theories” (Psillos, 1999). For successful, advanced 
theories, such as Einstein’s general relativity or Darwin’s 
evolution by natural selection, the question of plausibility 
does not really arise: other criteria for theory assessment 
are generally used, such as empirical adequacy or external 
coherence. As our focus shifts to the early stages of theory 
building or development, our criteria for assessing theories 
also shift — and then plausibility, along with a few other 
criteria, might become relevant. But what is “early theory”? 
We will not attempt a definition here. Rather, we will offer 
a partial typology, based on more or less specific cases to 
which plausibility considerations could apply.

(i) In some areas of psychological science, many theories 
are either informal or weak for predictive or explana-
tory purposes (Meehl, 1992b; van Rooij & Baggio, 
2021, 2020). Psychological theories typically have a 
shorter life cycle than theories in other areas of research 
(Meehl, 2002): this is not a sign of rapid development, 
but rather of the premature demise of theories.

(ii) Fields that have been impacted by the replication crisis 
are characterized by a surplus of inconsistent empirical 
results and by a lack of mechanistic or formal theories 
that can help select, organize, and explain such results. 

Biomedicine is an example. The scarcity of sufficiently 
developed theories is consistent with a high number of 
false or improbable hypotheses under test, which is a 
natural explanation for low replication rates (Bird, 2021).

(iii) In fields that rely on formal modeling (e.g., mathemati-
cal linguistics and computational cognitive science), 
theory development might be held back by the fact that 
(a) the techniques to prove that theories are equivalent 
or notational variants (Johnson, 2015) are abstract and 
removed from the aspects of theories that other prac-
titioners usually care about and (b) it is difficult to set 
formal criteria to select between theories with compa-
rable empirical coverage, even when non-equivalence 
has been established.

(iv) Some complex cognitive or social phenomena may 
be easy to identify but difficult to investigate system-
atically. Methodological or other challenges limit the 
available database and the type and scope of empiri-
cal theories that can realistically be built. Language 
acquisition is an example: known constraints on experi-
mental and observational studies make it difficult to 
build theories of the implicit knowledge that infants 
and children develop over time and to assess competing 
theories, where they exist.

(v) In mathematics, and in other fields of formal science, 
conjectures may be proposed and subsequently proved 
for ever larger, yet still finite samples of the relevant 
objects (e.g., Golbach’s conjecture). In these cases, 
there is no empirical basis for assessing the conjec-
ture inductively and no general theorem to replace the 
conjecture. However, as partial proofs or heuristic or 
probabilistic arguments accumulate, a conjecture may 
gain credibility. Conjectures are early theories in math-
ematics, to which goodness criteria different from strict 
theoremhood apply.

In all these cases, theories are or remain at early stages of 
development, because they are informal, weak, or too easily 
abandoned (i), largely absent in the face of irreproducible 
results or improbable claims (ii), difficult to identify or 
select via (non)equivalence arguments (iii), challenged by 
complexity and methodological constraints (iv), or stuck at 
the conjectural stage (v). In such circumstances, and in cases 
where new theories begin to emerge for novel or known 
phenomena (we discuss examples in sections “Plausibility in 
the Philosophy of Science” and “Plausibility in Linguistics 
and Cognitive Science”), standard criteria for the goodness 
of theories are less immediately applicable and plausibility 
considerations become relevant. Clarity is then needed 
on one or more notions of plausibility, distinct from other 
criteria and applicable to a wide range of possible early 
theory scenarios.
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Plausibility in the Philosophy of Science

Debates in the philosophy of science have shown that 
plausibility is entangled in a constellation of concepts and 
criteria of good theory and that it is occasionally equated 
with such concepts and criteria (Fig. 1). Achinstein (1964), 
and recently Bartha (2010), among others, have linked the 
plausibility and pursuitworthiness of early formulations of 
hypotheses to the credibility of analogical relations and 
arguments from established facts. Crucially, from analogi-
cal relations and from the existence of evidential support for 
one set of facts, nothing follows about the probability of the 
other set: analogy is not sufficient to justify a novel hypoth-
esis or additional credible assumptions. Analogical reason-
ing, however, is vindicated in practice by the many instances 
in which it has led to new discoveries: e.g., the electromag-
netic field is associated with a particle — the photon —, 
which “made it plausible to suggest” that the nuclear force 
field may also be associated with a particle — and indeed 
pions were later discovered. Shapere (1966) considers two 
examples of the uses of analogy in the formulation of novel 
hypotheses: Liebig’s “vital force” theory, via a contrastive 

analogy with chemical forces like “cohesion and affinity” 
vs gravitation or magnetism, and Huygens’ wave theory of 
light, by analogy with sound waves and their propagation 
through air. Huygens’ proposal was vindicated historically to 
an extent that Liebig’s was not, but they were both deemed 
plausible: the “degree of plausibility” of each proposed 
analogy depends on the “degree of success” of the relevant 
concepts and structures in the original domain (chemical 
forces or sound waves), “independently of any positive fac-
tual evidence in its [i.e., the analogy’s] favor.” In his reply to 
Shapere, Goudge (1966) argues that plausibility is a meth-
odological idea, not an epistemological one: the initial cred-
ibility or promise of novel analogically derived hypotheses 
cannot be justified (as could, e.g., the prior or posterior prob-
abilities of tested hypotheses), but reflects an assessment of 
viable “moves” for an investigator in context. These moves 
can suggest broad classes of hypotheses (instantiating kinds 
of analogical relations), but not specific hypotheses, which 
demand independent justification. Toulmin (1966) draws 
a different lesson from Shapere’s arguments. Plausibility 
undercuts a hard divide between (inductive) logic and prag-
matics: “reasons can be given, and judicially appraised” for 

Fig. 1  A conceptual map showing the relationships between plausibility (colored circles) and other criteria of good theory according to different 
authors in the philosophy of science (“Plausibility in the Philosophy of Science”)
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taking seriously a hypothesis as plausible. Judicial appraisal 
involves not the use of inductive or abductive logic, but 
rather of “case law” reasoning, primarily precedent, to estab-
lish the applicability of the relevant concepts. The idea that 
credible analogy lends a hypothesis plausibility, emerging 
from the philosophy of science in the mid-1960s, is still at 
play in debates in cognitive science (“Plausibility in Lin-
guistics and Cognitive Science”). Philosophers’ attention, 
however, has shifted to understanding the role of analogies 
in supporting pursuitworthiness judgments, theoretical uni-
fication, and model transfer across domains (Nyrup, 2020). 
None of these is strictly specific to early theory: for example, 
pursuitworthiness may be assessed not only for emerging 
theories, but also for accepted ones, and even for rejected 
theories (Šešelja & Straßer, 2013; Shaw, 2022).1

Others have related plausibility to verisimilitude. This 
work highlights a general preoccupation with realism, or 
the capacity of (early) theories to track the truth. Here too, 
parallels with established facts motivate (without justify-
ing) claims of plausibility: this is not unlike structural or 
conceptual analogy in Achinstein and Shapere, and builds 
on “relevant similarity with existing, sufficiently entrenched 
ontology, plus empirical adequacy and fruitfulness” (Hooker 
1996, pp. 650-651). The latter two criteria clearly do not 
apply to early theory, and the former seems to amount to a 
version of external coherence intended to anchor new theo-
ries to accepted scientific structures. An alternative perspec-
tive is developed by Meehl. Meehl (1992a) notes that plau-
sibility arguments tend to be weaker than proof or evidential 
support (but may be strengthened, if certain conditions are 
met): they specify “conceivable” hypotheses that should at 
least avoid “extreme” (very small) prior probabilities. Meehl 
(2002) writes that “the count of plausible theories for most 
fact domains is rather limited” (p. 342), though he does not 
list plausibility among his criteria for theory appraisal: his list 
comprises forms of parsimony, a theory’s ability to derive a 
variety of facts, and two types of reducibility (see also Meehl 
2004). “Initial plausibility” is part of a separate list of “addi-
tional criteria,” which also contains, for example, fruitful-
ness, fertility, elegance, and rigor of the theoretical deriva-
tions. Meehl (2002, 2004) notes that these additional criteria 
are not widely accepted by either scientists or philosophers, 
they are difficult or impossible to quantify, they are not 

obviously “truth-correlated” (verisimilitude), and they may 
even be reducible to the main attributes. However, he does 
not say which of these four issues applies to “initial plausi-
bility.” For Meehl, the problem with theories in psychology 
is that there are too many of them, which have been discon-
firmed, falsified, or abandoned for a variety of reasons: this 
he takes as an indication that a field is in a “primitive state” 
(Meehl 2002, p. 342). The task is to find ways of severely 
testing (“appraising”) existing theories, and the better ones 
will be those with greater predictive capacity (the derivation 
of facts; see above). It is then clear why, in Meehl’s perspec-
tive, neither initial plausibility nor any of the additional cri-
teria play a prominent role in theory assessment.

Another view is given by Simon (1968), who relates plau-
sibility to the simplicity of hypotheses that fit data patterns 
to a reasonable approximation. A hypothesis is plausible 
if it is “not inconsistent with our everyday general knowl-
edge,” if it is “already known (or strongly suspected) to be 
not far from the truth,” and if its “subsequent empirical fal-
sification would be rather surprising.” The emphasis is here 
shifted from the ontological (see above) to the epistemo-
logical plane, which is where compatibility is assessed, and 
from what scientific theories reveal about the world (entities, 
structures, etc.) to “everyday general knowledge.”

Agassi (2014) contrasts plausibility with proof and prob-
ability and notes that it fails to meet the standards of justi-
fication of both. Plausible or reasonable ideas may well be 
“preconceived views,” but they are not prejudices, if one 
is willing to discard them for valid reasons. Agassi links 
plausibility to context, arguing that plausibility is a useful 
concept for making sense of how historically ideas may be 
believed at a given moment and rejected later, and to com-
munity, where what is plausible hinges on public knowl-
edge, or is publicly accepted or permitted, or is a product 
of public debate. Emphasis on the community here can be 
contrasted with phenomenological accounts, where plausi-
bility judgments are driven by a “sense or feeling of under-
standing,” produced by relevant explanatory hypotheses. 
One problem with this account (see also Trout 2002) is that 
some early theories may, by definition, lack hypotheses that 
are sufficiently advanced to be explanatory or conducive to 
understanding. And if early explanatory hypotheses were 
available, they would only have potential (vs actual) explana-
tory power: plausibility would have to be based on the latter 
criterion, which lacks a working definition and a satisfactory 
analysis in the current philosophy of science.

From our discussion so far, four main propositions 
emerge: (1) what is assessed for plausibility are early theo-
ries, for which (counter-)evidence is yet to become available 
(Achinstein, Shapere, Meehl, Simon); (2) what gives initial 
plausibility to a theory is a relation of analogy (Achinstein, 
Shapere), similarity (Hooker), or consistency (Simon) with 
existing, established scientific or everyday knowledge; (3) 

1 Some philosophers of science may argue that there should not be 
any epistemic restrictions on pursuit: all proposals should be treated 
as equally viable forerunners of success. The concern is that “even 
the most seemingly trivial pursuitworthiness criterion would have 
inhibited some of the greatest scientific research programs in his-
tory” (Shaw 2022, 110). However, some scientific contexts, so-called 
“urgent science,” in which there is a practical or moral reason to 
obtain results within a particular time frame, may demand pursuit-
worthiness judgments. This is another point of difference between 
plausibility and pursuitworthiness.
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plausibility considerations cannot justify hypotheses but may 
vindicate them in practice, in those communities of inquiry 
that adopt them for methodological or substantive reasons 
(Achinstein, Shapere, Goudge, Toulmin, Agassi); and (4) 
plausibility is a virtue of (early) theories: given the choice, 
it is preferable (if not more rational) to consider and pursue 
relatively more plausible hypotheses.

Plausibility in Linguistics and Cognitive 
Science

Plausibility considerations have been used in linguistics and 
cognitive science to assess the relevance and applicability of 
certain formal frameworks to the study of the human mind 
or brain at different levels of analysis. We will consider three 
types of plausibility considerations — biological, cognitive, 
and computational — and discuss some of their uses in eval-
uating research on connectionist networks, Bayesian cogni-
tive science, and models of tractable cognition. The aim here 
is to review a few illustrative uses of plausibility in these 
fields and to clear the space for the more positive contribu-
tion we try to make in sections “Invariance and Tractabil-
ity: Plausibility and Formal Theory” and “Community and 
Inquiry: Logic and Pragmatics of Plausibility.”

Biological Plausibility: Connectionism and Artificial 
Neural Networks

In the early days of connectionism, and possibly since 
McCulloch & Pitts (1943), the plausibility of artificial neural 
networks (ANNs) was predicated on a number of properties 
— i.e., computation by distributed units, activation thresh-
olds, and weighted connections — that ANNs were thought 
to share with biological brains. Rumelhart’s 1989 clas-
sic assertions that ANNs are “neurally inspired” and that 
computation in such systems is “brain-style computation” 
underscore the use of (contrastive) analogy in arguing why 
in cognitive science ANNs are preferable to other models of 
computation (e.g., the von Neumann architecture). A rela-
tional notion of plausibility, of the kind introduced in the 
“Plausibility in the Philosophy of Science” section, therefore 
applies here too. However, the analogy did not target the 
brain as such, but classical theories of brain function (Cichy 
& Kaiser 2019). Secondly, the analogy was not intended to 
capture all structural properties of biological neural net-
works, but only those that suffice to support the kinds of 
computations that brains appear to carry out (see McCulloch 
& Pitts’ 1943 five “physical assumptions,” p. 188). ANNs 
are thus plausible to the extent that they achieve a degree of 
functional similarity (Cichy & Kaiser 2019) with biological 
brains. The goal of connectionism has never been to model 
the brain’s actual anatomy and physiology, but to reproduce 

and study aspects of biological information processing by 
exploiting sufficient properties of the underlying substrate. 
That is also why, even as knowledge in neurobiology grew 
(e.g., with findings on synaptic plasticity, neuron types, the 
functional role of inhibition, local vs global connectivity) 
and as the structural analogy between ANNs and biological 
brains further fell away, functional similarity claims were 
never disavowed (Stinson 2020). Graceful degradation is 
one example: damage to parts of an ANN generally leads 
to partial or minor performance losses, which “mimics the 
human response in many ways and is one of the reasons we 
find these models [...] plausible” (Rumelhart 1989, p. 231). 
Another example is the capacity of ANNs to uncover latent 
structure in data, which is what brains must also do and 
arguably what explains the recent successes of deep learning 
models in predicting and exploring cortical activity (e.g., 
Ramakrishnan et al. 2015).

That being said, the functional analogy between ANNs 
and brains breaks down for key processes such as learning. 
Biological and machine learning are different in terms of 
initial conditions, input requirements, learning trajectories, 
learning outcomes, and robustness of learned representa-
tions (but see Achille et al. 2019 for one intriguing excep-
tion). Backpropagation is a major reason why ANNs are 
implausible models of biological learning: weight changes 
propagate backwards through the entire network (this has 
“no plausible physical interpretation” and violates “basic 
properties of locality”; Grossberg 1987, p. 50), and over 
long time periods, backpropagated gradients tend to vanish 
or explode (Bengio et al. 1994; LeCun et al. 2015). Here, 
different responses are possible, ranging from arguing that 
backpropagation is not as implausible as it may appear, 
to developing more plausible learning rules (e.g., Dror & 
Gallogly 1999; Richards et al. 2019; Yang & Wang 2020). 
These responses tend to assume that plausibility is, again, an 
analogy or similarity with relevant functional properties of 
biological brains. But analogy is not the same as empirical 
adequacy. Backpropagation lacks a neurobiological coun-
terpart, a corresponding process in the brain. Analogy is 
supposed to allow for a more permissive assessment than 
empirical adequacy of the compatibility of backpropagation 
with our best theories of biological brains and with the facts 
they are based on. For aspects of an early theory or model 
that lack an empirical counterpart, as indeed backpropaga-
tion, the question arises as to which criteria one can use: 
plausibility as analogy or similarity has been one of them.

In spite of the field’s adoption of a standard concept of 
plausibility, not everyone would agree that biological plau-
sibility is a virtue of theoretical constructs. For example, 
Mewhort (1990) concedes that theories or models in psy-
chology need “tuning” at the physiological level. But he also 
writes that “biological plausibility must start with behavioral 
accuracy” (p. 161): anatomical and physiological facts about 
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the brain do not compel us to accept or reject computational 
architectures (e.g., favoring connectionism over von Neu-
mann’s), and such decisions must be based on other crite-
ria of the goodness of theories, such as a theory’s capacity 
to explain behavior. In a similar spirit, Dror and Gallogly 
(1999) argue that biological plausibility is largely irrelevant 
for analyses at Marr’s (1982) computational and algorith-
mic levels: analyses that contradict or disregard biological 
facts can still be useful in characterizing a computational 
problem. More recently, Love (2021) has expressed concern 
about asking biological plausibility questions about levels 
of analysis other than the implementational level or about 
mechanisms that are not reducible to biological components 
or interactions. His proposal emphasizes coherence and con-
tinuity between levels of analysis or mechanistic explana-
tion: models at different levels must be assessed for their 
capacity to explain variance in data and by how well they 
satisfy mutual constraints.

All these perspectives presuppose that sufficient empirical 
data, beyond generic insights or observations, are available, 
or that candidate explanatory theories or models exist. On 
this assumption, we agree that standard criteria for evaluat-
ing theories should be used, instead of biological plausibil-
ity. As noted in the “Early Theory: A Partial Case-Based 
Typology” section, however, there exist numerous cases 
where data are abundant, but insufficiently structured to 
support theory development or selection, or where theories 
are not yet at a stage where they can make discriminating 
use of data, e.g., in prediction. In such cases, a relational or 
analogical concept of plausibility may prove useful. McCull-
och and Pitts (1943) relied on generic observations about 
biological brains, which sufficed to justify claims of anal-
ogy or functional similarity for ANNs, but not to defensibly 
present ANNs as theories of brain function with predictive 
and explanatory power vis-à-vis empirical observations from 
anatomy or physiology. We do not concur with Love (2021) 
that “the term biological plausibility should be dropped”: it 
should be used when other criteria are not applicable, in the 
type of cases discussed, and it should be applied at appropri-
ate levels of analysis.

Cognitive Plausibility: Bayesianism and Beyond

Moving to the computational and algorithmic levels (“Com-
putational Plausibility: Tractable Cognition”), we find again 
notions of cognitive plausibility with limited applicability to 
early theory. These amount to a theory’s or a model’s ability 
to match or fit (1) human input/output behavior or (2) human 
errors, or (3) to take into account human-like constraints 
(e.g., limited rationality) (Kennedy’s 2009): (1) and (2) quite 
clearly presuppose ongoing empirical research programs and 
sufficiently developed theories so that the outcomes of meas-
urements can be compared to theory or model predictions. 

Consider again ANNs. The lack of structural similarity 
between ANNs and the brain implies that these models are 
not anchored to a single level of analysis (e.g., the imple-
mentational level). Questions of cognitive plausibility then 
arise, separate from questions of biological and neural 
plausibility. The cognitive plausibility of ANNs is taken to 
depend on their capacity to “match” observed human behav-
iors or neural activity (Oota et al. 2022; Michaelov et al. 
2021; Branco et al. 2020). This type of work is concerned 
with correlations between measures drawn from ANNs and 
observed variables in brain and behavior, but it does not 
consider the plausibility of the processes or representations 
induced by ANNs, of the training methods or samples (e.g., 
compatibility with features of realistic input to human learn-
ers), or of the specific mechanisms or resources (i.e., con-
text, memory) implemented in a model. Thus, architectures 
that make assumptions compatible with popular theories 
of human cognition (e.g., limited contextual information, 
bounded memory) are occasionally discarded in favor of 
models showing higher correlation with human behavior or 
brain activations on the relevant tasks (e.g., Merkx & Frank 
2021; Michaelov et al. 2021). Plausibility therefore collapses 
into empirical accuracy which, as mentioned, is rarely appli-
cable to early theory.

Other authors adopt a broader notion of cognitive plau-
sibility, arguably closer to verisimilitude and realism. In a 
discussion of computational models of language acquisition, 
Phillips and Pearl (2015) situate requirements of cognitive 
plausibility in contrast to the idealizations or approxima-
tions models have to make and tie it essentially to empiri-
cal validity: a model is more plausible to the extent that it 
approximates the acquisition task. This is defined not just in 
terms of successful output or predictions, but also in terms 
of the units of representation and types of constraints incor-
porated into a model. Plausibility partly guarantees realism: 
plausible models are empirically testable and have greater 
explanatory power compared to other models. Plausibility 
is argued to help foster these additional theoretical virtues, 
instead of the latter being requirements on plausible mod-
els. This perspective too presupposes some knowledge of 
the target system, to which the model is compared: from 
this comparison follow judgments of the plausibility of the 
model. But for early theory, when such knowledge is lacking 
and is precisely the goal of theory development, in tandem 
with empirical work, one would need a notion of plausibility 
that allows one to set off inquiry in a promising direction to 
find out about the target system. When information about the 
target system is not yet available, what kind of knowledge 
could be used to formulate plausibility judgments? Research 
on Bayesian models of cognition may provide useful hints.

Approaches to cognitive theorizing in the Bayesian tra-
dition aim to characterize inductive problems, such as lan-
guage learning (see Abend et al. 2017), explicitly at Marr’s 
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computational level, by focusing on the “goal” of the cogni-
tive task and on constraints necessary to achieve that goal 
(Perfors et al. 2011). Studies in this tradition usually still 
appeal to degrees of fit of models against human data, but 
Bayesian methods are argued to lead to more plausible theo-
ries, because of how they push one to commit transparently 
to fine-grained model assumptions (e.g., properties of the 
hypothesis space, nature of the representations involved, 
how hypotheses are evaluated). The relevant notion here is 
cognitive-computational plausibility, defined in terms of 
explicit specifications of possible computational mecha-
nisms (Kemp et al. 2004). Bayesian cognitive science allows 
considerable latitude in exploring the capabilities and limita-
tions of models through different formal choices and model 
setups: degrees of plausibility can thus be introduced. For 
example, people have difficulty solving even basic probabil-
ity problems: this is taken to suggest that Bayesian mod-
els are not cognitively plausible. However, Sanborn and 
Chater (2016) show that models using Bayesian sampling, 
instead of explicit probabilities, are cognitively plausible 
and empirically adequate (e.g., in explaining some limita-
tions of human probability judgments). Another example is 
provided by Stenning and van Lambalgen (2010). Human 
reasoning is argued to be non-monotonic: it allows transi-
tions between truth values or probabilities in any “direc-
tion,” e.g., from true to false or vice versa, and from the 
prior P(e)=0 to the posterior P(e)>0. However, in Bayesian 
models, more evidence never makes a zero probability posi-
tive: the Martingale convergence theorems guarantee that 
probability distributions stabilize in the limit and require that 
null probabilities remain null. One could assume that prob-
abilities are never null, only very small: but this would entail 
that probabilities are defined on the set of all propositions, 
not on a finite subset, which is a cognitively implausible 
assumption to make.

These examples show that in Bayesian theories, math-
ematical considerations or other theory-internal parameters 
(i.e., the way the model is set up formally), in combination 
with insights on what is cognitively or computationally pos-
sible for minds and brains to achieve, ground plausibility 
judgments: this is different from notions of biological or 
cognitive plausibility that rely entirely or largely on similar-
ity or analogy with (unknown) aspects of the target system. 
Plausibility is no longer only a relational notion but takes on 
a formal dimension as well. This is an important shift that 
we explore more fully below.

Computational Plausibility: Tractable Cognition

A number of researchers approaching cognitive questions 
from a computational or a mathematical perspectives have 
made the case for an explicit concern about particular for-
mal properties of theories (Barton et al. 1987; Ristad 1993). 

In this literature, plausibility is evaluated with reference to 
computational tractability, descriptive complexity, and cor-
relation with human behavior. As already hinted at in the 
Bayesian literature, if less explicitly, attention to formal-
izing a cognitive problem from a computational perspec-
tive forces modelers into abstractions or idealizations (e.g., 
unbounded inputs or memory resources). Abstracting away 
from physical constraints can be considered a shortcoming 
of these approaches, but several authors in this framework 
consider instead that formally motivated idealizations often 
help avoid baking arbitrary assumptions into a theory (e.g., 
arbitrary bounds on working memory, see Savitch 1993).

At the same time, the consequent simplification of the 
domain of inquiry is not only desirable but necessary in the 
early stages of studying complex systems. We understand 
idealization not as contrary to plausibility, but as a require-
ment for plausible analyses (Szymanik & Verbrugge, 2018). 
On this account, simplicity of descriptions can be balanced 
with empirical adequacy. However, considerations on the 
computational tractability of a theory play a central role, 
as they enable researchers to evaluate and filter possible 
(“plausible”) theories as they are being developed before 
empirical comparisons with data can be carried out (van 
Rooij & Baggio 2021). For instance, comparing theories 
of the representation of visual objects, Edelman (1997) ties 
criteria for plausible theories to computability and space-
time constraints, arguing that “formal methods” can reveal 
how particular theory-internal problems may turn out to 
be irrelevant for the development of a broader theoretical 
understanding of particular cognitive tasks.

Adopting a slightly different stance here, Tsotsos (1993) 
suggests that no type of explanation in cognitive science is 
unrelated to “computational hypothesis”: that is, computa-
tional considerations, in some ways, constrain all theories. 
However, Tsotsos proposes that algorithmic considerations 
have to go hand in hand with biological plausibility: an 
algorithm might be “good” (in the sense of tractability) and 
“valid” (accounts for experimental observations) but must 
also be physically realizable. Similarly, Perconti (2017) 
regards tractability as a computational and biological con-
cern, while adopting a strong instrumentalist view of the 
goodness of theory as fundamentally tied to empirical suc-
cess. Computational tractability does not imply cognitive 
plausibility; however, the former is argued to constitute “a 
necessary commitment” for the latter: both computational 
tractability and “fit to the ordinary situations [that the theo-
ries] are encoding” (empirical coverage) are required for the 
plausibility of a (computational) cognitive theory.

For these authors, plausibility is characterized at the 
intersection of satisfaction of constraints imposed by the 
computational complexity of the problem and the physical 
resources available for its resolution. Importantly, physical 
realizability may not coincide with notions of biological 
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plausibility discussed earlier, as it is rather tied to questions 
about resource capacity, and thus relates to constraints at 
Marr’s algorithmic level. In this sense, theoretical realiz-
ability can be defined within the bounds of computational 
complexity. Therefore, it is compatible with the limited 
knowledge of the system typically available during early 
theoretical development. So, we agree with Love (2021) 
that biological plausibility does not directly apply to levels 
other than the implementational, but we also believe that 
computational plausibility matters for levels other than the 
computational. We elaborate on this point in the next sec-
tion, where we begin to articulate the value of computational 
insights in defining classes of potentially plausible theories.

Invariance and Tractability: Plausibility 
and Formal Theory

As we have seen, many of the appeals to plausibility in the 
philosophy of science and cognitive science collapse into 
other goodness-of-theory criteria. Moreover, plausibility 
seems needed to guide the early stages of theory develop-
ment, but these other criteria are not applicable to early the-
ory. The question is then, how do we characterize a notion 
that is less dependent on other criteria of good theory and 
appeals to considerations that do not require extensive 
knowledge about a target system? If the purpose of cogni-
tive science is to provide explanatory accounts of cognitive 
capacities, what is desirable at the early stages of theoreti-
cal development is not to try to pursue one good theory, but 
rather to focus on the formulation of classes of hypotheses 
with high prior probability, as well as to avoid hypotheses 
with relatively small prior probabilities (recall Meehl), given 
limited knowledge of a domain (van Rooij & Baggio 2020, 
2021; Bird 2021). Notions of plausibility are needed to char-
acterize desirable attributes of early explanatory hypotheses.

Simon (1990) argued that “the fundamental goal of sci-
ence is to find invariants” and that in building theories of 
cognition, we should aim to discover “invariants in the 
mechanisms that allow [us] to solve problems and learn: 
the mechanisms of intelligence” (p. 17). He also empha-
sized that these invariants will be “mainly qualitative” and 
“appropriate to adaptive systems” and that some will be 
shared “with certain nonbio logical systems—the comput-
ers” (pp. 2-3). A computational lens helps navigate the space 
of possible explanatory hypotheses, restricting it to classes 
of hypotheses that are (a) minimally plausible (no false pre-
suppositions or low prior probability assumptions) and (b) 
invariant across a broad range of possible algorithmic or 
physical implementations of a cognitive theory, and thus 
applicable to biological and artificial computing systems 
alike. Take for instance models of cognition focusing on 
tractability. Computational complexity theory is generally 

concerned with how “hard” particular kinds of problems 
or tasks are to solve, usually by conceptualizing them as 
functions that map problem instances to answers: e.g., the 
problem of deciding whether a string is well-formed given 
a grammar, or the problem of finding optimal outputs for 
given inputs based on a finite set of constraints. This per-
spective allows us to explore assumptions about aspects of 
a problem that might require various restrictions to make it 
tractable (Wareham 1996; van Rooij 2008; van Rooij et al. 
2019).

As complexity analyses characterize types of problems, 
they also distinguish sets of possible hypotheses for each 
formulation of a problem. Consider the problem of decid-
ing whether a string s belongs to the language generated by 
a grammar G (i.e., deciding whether s ∈ L(G), the set of all 
strings consistent with G). There are two instances of this 
problem. If G is not defined a priori, we are asking how hard 
it is to determine if an arbitrary string belongs to an arbi-
trary grammar (i.e., the universal version of the problem; 
Barton et al. 1987; Wareham 1996). However, we might be 
interested in understanding the problem’s complexity for 
an arbitrary string and a particular grammar (G is already 
defined). Looking at the problem in this way highlights the 
impact of specific assumptions about G’s type: if G is con-
text-free (Chomsky 1959), the problem is solvable in poly-
nomial time, in both its universal and non-universal instan-
tiations; but if G is a Lambek Categorial Grammar (Lambek 
1958), the universal version is NP-complete while the 
non-universal one is polynomial (Pentus 2006; Heinz et al. 
2009). In giving us insight into the consequences of par-
ticular problem formulations, complexity-theoretic analyses 
delineate classes of desirable theories. One can then focus 
on characterizing theories that are consistent with respect 
to some highly probable computational requirement, given 
a particular formulation of the problem. This is useful for 
generating plausible candidate hypotheses at the early stages 
of theory development when one typically ignores aspects 
of a problem that allow one to decide among fine-grained 
assumptions of alternative individual theories. It can also 
suggest how to move forward in explorations of a theoretical 
space (e.g., by highlighting which problem aspects should 
be parameterized in order to achieve minimal computational 
plausibility, and how; Garey & Johnson 1979; Barton et al. 
1987; Ristad 1993; Wareham 1996, 1999; Heinz et al. 2009). 
Considerations of tractability at the computational level may 
also speak to representational and algorithmic commitments 
(e.g., they help articulating requirements for suitable data 
structures, given a problem specification) tying back to key 
desiderata (e.g., biological realism) relevant beyond the 
computational level (van Rooji 2008).

Delineating how classes of theories can characterize com-
putational properties of the problem space is one perk of 
computational approaches beyond tractability analysis. For 
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instance, complexity characterizations outlined by formal 
language theoretic analyses of string patterns have allowed 
researchers to establish links between linguistic phenomena 
and the expressivity of the machinery required to evaluate 
them, e.g., regular vs context-free strings, requiring finite 
state vs push down automata, respectively (Chomsky 1957; 
Hopcroft et al. 2001). Specifically, formal language theory 
allows for descriptive characterizations that address the 
information necessary to characterize a pattern of a par-
ticular class. Descriptive characterizations focus on minimal 
complexity requirements (e.g., what kind of resources are 
necessary to distinguish sequences of segments adjacent to 
each other), making it possible to isolate invariants of the 
capacities under study, i.e., necessarily applicable to any 
theory attempting to account for them as well as to a wide 
range of implementations of the theory (Rogers & Pullum 
2011; De Santo & Rawski 2022; for experimental proofs of 
concept, see De Santo & Drury 2019, Bremnes et al. 2022, 
2023). Complexity analyses (e.g., tractability, expressiv-
ity, generative capacity) are not meant to avoid theoretical 
assumptions on relevant properties of the target system. 
Rather, they can make such assumptions explicit (e.g., lim-
ited resources, time/space constraints), and because of this, 
they allow evaluation of trade-offs for classes of theories 
making alternative commitments (e.g., expressivity trade-
offs that come with assuming trees vs strings as the unit of 
representation for language; Michaelis 2001, 2004; De Santo 
& Rawski 2022; Graf 2022; and references therein).

This framework also allows theorists to identify sources 
of complexity within the problems themselves or within 
alternative formulations of theories. Complexity considera-
tions help isolate invariant properties across theoretical for-
mulations and compare and evaluate notational variants of 
particular theories with respect to what each of them states 
about the objects of theorizing (Simon 1990; Keenan & 
Stabler 2010; Johnson 2015; Nefdt & Baggio 2023). This 
notion of invariance (under alternative theoretical formula-
tions) is conceptually quite different from the invariances 
(under different presentations of the same or similar pat-
terns in data) exploited by machine learning, as well as from 
other notions of invariance in science (e.g., in measurement 
theory; Suppes 2002). Structures or properties of a target 
system that are invariant in this sense are more likely to 
be preserved in future versions of a theory: they constitute 
a stable core, which is less likely to change as the theory 
evolves, and could also steer the theory on an early path to 
greater verisimilitude. Computational invariants — such as 
minimal complexity, fundamental limits or constants à la 
Simon (1990), etc. — are thus an important part of what 
lends a theory its initial plausibility.

As initial stages of theory development necessarily build 
on sparse knowledge of a system, the approaches outlined 
above may offer the best chances of setting us en route 

towards sound explanatory theories, or at least away from 
theories that have low prior probability or are even compu-
tationally impossible. Importantly, inferences made about 
a system are not just restricted to empirical, scientifically 
obtained data: they are also affected by contingencies of 
a scientific community, such as its history, common sense 
knowledge, and widely held assumptions (van Rooji & 
Baggio 2020). Fruitful notions of plausibility then should 
also implicitly or explicitly refer to a community (Agassi 
2014): formal concepts of plausibility must be balanced by 
or filtered through a pragmatic model that factors in initial 
epistemic agreement among members of a community of 
inquiry.

Community and Inquiry: Logic 
and Pragmatics of Plausibility

A theory or claim will hardly be considered plausible if the 
plausibility judgment comes from only one or a few indi-
viduals, let alone if that judgment clashes with what the 
wider community would accept. Plausibility is a disposi-
tional property of theoretical constructs that they can receive 
or be denied approval (“plausus”) by expert members of a 
community that are expected to assess them. Aspects of the 
relationship between plausibility and community can be ten-
tatively explored using tools from logic and insights from 
the pragmatist philosophy of science.

Belief change has been investigated in Dynamic Epis-
temic Logic (DEL), a modal logic to study changes in epis-
temic states for one or more agents.2 In DEL, belief change 
for multiple agents is modeled by means of plausibility 
models (Baltag & Smets 2006, 2008), a variation of Kripke 
models. Intuitively, a Kripke model is a structure that char-
acterizes knowledge or beliefs for rational agents given a set 
of possible worlds. A statement is known by the agents, if it 
is true in all worlds they consider candidates for the actual 
state of affairs. Agents may be uncertain about the informa-
tion they possess. Their behavior and reasoning are based on 
what they know as well as on what they believe. If an agent 

2 Belief change has been modeled in other frameworks, like AGM 
(after Alchourrón, Gärdenfors, and Makinson), but DEL has become 
popular because of its advantages over AGM. For example, it can 
account for higher-order beliefs and can be applied in multi-agent 
scenarios. However, the epistemic and dynamic operators that enrich 
the DEL framework with enough expressive power to model and rea-
son about agents’ knowledge, beliefs, and actions come at a computa-
tional cost (Aucher & Schwarzentruber 2013): for instance, the satis-
fiability problem for individual agents in Public Announcement Logic 
(a fragment of DEL) is NP-complete (Lutz 2006). That said, DEL has 
been successfully used to model a range of problems, for example the 
complexity of theory of mind reasoning and related issues (e.g., van 
de Pol et al. 2018; Szymanik & Verbrugge, 2018).
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or a group of agents knows something, that is true in all 
possible worlds accessible to them, whereas agents believe 
something if they are uncertain about it: i.e., they consider 
it true in some possible worlds and false in others. One can 
then order possible worlds: a plausibility order specifies 
which worlds an agent considers more or less likely to be 
the actual world (Velázquez-Quesada 2014). Thus, in plau-
sibility models, the accessibility relation, standard in modal 
logic, is interpreted as a distinctive relation that reflects the 
agent’s plausibility order over possible worlds. Suppose that 
an agent a is entertaining two different worlds, w and v, as 
possible without knowing if any of them is the actual one. 
They may impose a relative plausibility order denoted by 
≥a. To say that for agent a (or group of agents a1, …, a2, …, 
an, abbreviated with 𝜎) world w is at least as plausible as v, 
we write w ≥a v,3 which gives a basis for comparative judg-
ments of plausibility.

Within DEL, plausibility can be updated: it is subject to 
belief revision based on relevant information updates. One 
obvious way in which the information shared by a commu-
nity of agents may be updated is through public announce-
ment. For example, after an agent truthfully states that a 
proposition p in world v is false, world w might become 
strictly more plausible not only for her but also for other 
agents. Also, that p is false at v becomes common knowledge 
in this multi-agent system: all agents in the group know it, 
and know that all other agents know it.

DEL offers a structural and dynamic model of how a 
proposition can be deemed plausible by a community at an 
early stage of inquiry while remaining open for revision. 
Within DEL, plausibility does not presuppose that the tar-
get system is known or understood, even partly, and is not 
reduced to other criteria that may be more appropriate to 
assess theories at later stages of their development.

Modeling plausibility through the lens of DEL in 
multi-agent systems allows us to distinguish it from 
phenomenological (subjective) accounts and to appreciate 
its dynamic role in a community of inquiry. This leads to 
a notion of plausibility useful to analyze the acceptance 
and rejection of ideas through history, as Agassi (2014) 
acknowledges. In DEL, a historical perspective is 
introduced “for free” by the dynamic nature of formalism, 
allowing iterated belief revision as well as transitions 
from ignorance to belief to knowledge. However, a richer 
perspective can be achieved by incorporating key insights 
from post-Peircean epistemology. In that framework, 
plausibility can be distinguished from truth, probability,  

and from the background of beliefs that inquiry starts 
from. If hypothesis H is true, we may expect that if 
we conducted research on H, we would find that H 
would encounter no recalcitrant data and arguments 
(Misak, 2004). This is too much to expect when H is just 
deemed plausible, and no evidence exists yet for or against 
it: we may expect that others would choose to conduct 
research about H (rather than some H′ ranked lower in the 
agents’ plausibility order), but not necessarily that it would 
survive contact with data or arguments (unless of course it 
is true). This pragmatic view of plausibility overlaps with 
criteria like pursuitworthiness, although the point raised 
in the “Plausibility in the Philosophy of Science” section 
that pursuitworthiness applies to theories at any stage of 
development, implies that overlap is only partial.

Pragmatists have emphasized that inquiry typically 
starts off from a background of beliefs that are not 
doubted. But what is plausible is often doubted, it must 
be foregrounded and made explicit, and need not come 
from the background at all. Further, probabilities often 
change over the short run, at each new experiment, even 
if slightly, whereas plausibility judgments reflect a long-
term commitment or policy: researchers may be unwilling 
to change their plausibility order unless the truth value 
of relevant claims becomes known or experiments move 
relevant probabilities by a sufficient margin that further 
large shifts are not expected. In a pragmatist framework 
too, there is room for an epistemologically autonomous 
idea of plausibility, different from truth, probability, and 
background belief.

This point may be taken a step further. In a pragmatist 
analysis, plausibility can be distinguished from verisimili-
tude — a move which we are not able to make in a purely 
logico-inferential framework, and indeed the two ideas 
remain close in our treatment in the “Invariance and Trac-
tability: Plausibility and Formal Theory” section. Plausi-
bility judgments in a given community would be based on 
consensus: agents tend to agree on ranking H higher than 
suitable alternatives in their plausibility orders. Instead, 
judgments of verisimilitude are based on convergence 
(Misak, 2004): mathematically, two measures converge 
if the difference between them gradually diminishes, 
until it becomes so small that it can be ignored. In clas-
sical accounts (Popper, 1963, 1976; Niiniluoto, 1987), 
the “error” involved in theories will decrease as a theory 
gets closer to the truth, i.e., becomes more truth-like. The 
idea of consensus, specifically as far as plausibility is 
concerned, does not involve the notion of approaching a 
limit. In fact, it often holds even before inquiry starts, as 
the initial epistemic state of the community, and does not 
require that measures of error or verisimilitude are either 
available or applicable, as is typically the case in the early 
stages of theory development.

3 Conversely, to say that for a, world v is no less plausible than world 
w, we write w ≤a v. If w is strictly more plausible than v for a, we 
write w >a v; if v is strictly more plausible than w, we write w <a v. 
If w and v are equally plausible for a, we write w ≃a v (w ≥a v and w 
≤a v hold).
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In DEL, one can model the distinction between initial 
consensus on plausibility judgments vs expected conver-
gence on the truth value of hypotheses. Plausible hypoth-
eses are the first-order beliefs initially ranked higher in their 
plausibility ordering by members of a community: e.g., that 
connectionist nets are plausible functional models of the 
brain, that Bayesian inference offers a plausible model of 
human inductive learning, and that initially plausible candi-
date functions for cognitive implementation are those with 
lower computational complexity. This is consensus: it need 
not be universal, and it need not remain shared as research 
proceeds. Agents may also have second-order beliefs about 
what the community will know as the inquiry progresses long 
enough. Beliefs higher in this second-order ranking capture 
what appears likely to obtain eventually: that is convergence 
on the truth or the probability of claims, from the agents’ 
epistemic vantage point.4 Importantly, only initially shared 
high-ranked first-order beliefs (consensus) are characteris-
tic of plausibility judgments: agents could deem H plausi-
ble without necessarily agreeing that it will eventually be 
accepted as true; agents might also form first-order beliefs or 
commitments, and know there is agreement on them, with-
out entertaining second-order beliefs about future shared 
epistemic states.

Conclusions: Plausibility and Theoretical 
Reform

Improving the quality of theories in any field of research 
requires solving a host of problems, from identifying phe-
nomena worth explaining, to developing a set of tools for 
theory building and development, as well as criteria for 
assessing the quality of theoretical proposals. For early 
theories (i.e., theories that are not yet fully formalized, 
do not yet make precise qualitative or quantitative predic-
tions, and do not encompass known facts from adjacent 
fields), these problems arise in particularly acute forms. 
Here, we have addressed one pressing problem: that of 

knowing whether one’s nascent theory is on the right 
track. We have argued that the concept of plausibility 
— though at times used inconsistently in the cognitive 
science literature — may be helpful precisely at early 
stages of theory formation, when familiar criteria are not 
yet applicable, either because empirical results are sparse 
or inconsistent or because too little data is available to 
speak directly to particular theories or to support theory 
choice. We claim that while plausibility may not justify 
novel hypotheses inferentially, it provides a useful guide 
to their generation (e.g., leveraging analogies and other 
relations with more established scientific structures) and 
that in spite of arguments for implausible theories or 
models, plausibility — properly understood — remains 
a theoretical virtue.

In our view, the proper understanding of plausibility as 
relevant to early theory development entails at least two 
theses:

(1) A formal-computational thesis that plausible theories 
are those that (a) incorporate elements also shared by 
other proposals (invariants) and (b) meet minimal com-
putational complexity requirements;

(2) A logico-pragmatic thesis that plausible theories are 
those that rational agents in a community of inquiry 
collectively rank higher than competing proposals at 
any given moment (consensus), regardless of whether 
those theories will turn out true or whether the agents 
believe they will.

These notions of plausibility may not be entirely epis-
temically autonomous from other criteria for the goodness 
of theory (e.g., verisimilitude plays an important role in our 
first thesis). Nonetheless, they do not fully collapse into 
other criteria, and crucially, they are applicable when other 
criteria are not.
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