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Abstract

Stabler’s (2013) top-down parser for Minimal-
ist grammars has been used to account for
off-line processing preferences across a vari-
ety of seemingly unrelated phenomena cross-
linguistically, via complexity metrics measur-
ing “memory burden”. This paper extends the
empirical coverage of the model by looking
at the processing asymmetries of Italian rela-
tive clauses, as I discuss the relevance of these
constructions in evaluating plausible structure-
driven models of processing difficulty.

1 Introduction

Recent studies have shown that a top-down parser
for Minimalist grammars (MGs; Stabler, 1996,
2013)) can be combined with complexity metrics
to relate parsing behavior to memory usage, and
successfully used to model sentence processing
preferences across a variety of phenomena cross-
linguistically (Kobele et al., 2013; Gerth, 2015;
Graf et al., 2017). This kind of work follows a
line of research on syntactic processing that sees
computational models provide a transparent, inter-
pretable linking theory between syntactic assump-
tions and processing behavior (Joshi, 1990; Ram-
bow and Joshi, 1994; Hale, 2011). Importantly, at
the core of the particular approach adopted here
is a theory of grammatical structure driving off-
line processing cost, thus connecting longstand-
ing ideas about memory resources with explicit
syntactic analyses in rigorous ways. Extending
the range of phenomena correctly modeled by the
parser is then going to be crucial to confirm the
empirical feasibility of the approach.

Here, I adopt Kobele et al.’s (2013) imple-
mentation of Stabler’s (2013) top-down traver-
sal algorithm, coupled with the set of complex-
ity metrics defined by Graf et al. (2017). We test
the MG parser’s performance on the processing

asymmetries reported for Italian relative clauses,
which have been object of extensive study in the
psycholinguistic literature. Apart from conform-
ing to a well-attested cross-linguistic preference
for subject over object relatives, Italian speak-
ers also show increased processing difficulties
when encountering relative clauses with subjects
in postverbal position. This difficulty gradient has
often been accounted for in the literature in terms
of the cost of local ambiguity resolution. Since in
the particular formulation of Kobele et al. (2013)
the MG parser acts as an oracle and deliberately
ignores structural ambiguity, these constructions
thus make for a challenging testing ground for a
model attempting to account for processing con-
trasts just in terms of structural complexity.

The paper is structured as follows. Section 2
presents an informal introduction to MGs and Sta-
bler’s (2013) top-down parser, and an overview of
previous work on combining the MG parser with
complexity metrics measuring memory burden.
Section 3 discusses Italian relative clause asym-
metries and our modeling assumptions. Section 4
looks at the modeling results, and shows how the
MG parser succeeds in predicting the correct pro-
cessing preferences. Section 5 concludes with a
brief discussion of possible limits of the model,
and promising future work.

2 Preliminaries

2.1 Minimalist Grammars

MGs (Stabler, 1996, 2011) are a highly lexical-
ized, mildly context-sensitive formalism incorpo-
rating the structurally rich analyses of Minimalist
syntax — the most recent version of Chomsky’s
transformational grammar framework. Therefore,
they have proven to be a fruitful grammar for-
malism in investigating how ideas from theoreti-
cal syntax weight on sentence processing. While
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Figure 1: Phrase structure tree (a), MG derivation tree (b), and annotated derivation tree (c) for Steven likes Connie.
Boxed nodes in (c) are those with tenure value greater than 2, following (Graf and Marcinek, 2014).

much work has been done on the formal proper-
ties of MGs, the fine-grained details of the formal-
ism are unnecessary given the focus of this paper.
Thus, I introduce MGs in a mostly informal way,
as my main goal is to provide the reader with an
intuitive understanding of the core data structure
the parser is going to operate on: derivation trees.

An MG grammar is a set of of lexical items
(LIs) consisting of a phonetic form and a finite,
non-empty string of features. They distinguish two
types on features, each with either positive or
negative polarity: Merge features (written here in
upper caps, with the exception of little v), and
Move features (in lower caps). LIs are assem-
bled via two feature checking operations: Merge
and Move. Informally, Merge combines two LIs if
their respective first unchecked features are Merge
features of opposite polarity. Move removes a
phrase from an already assembled tree and dis-
places it to a different position (Stabler, 2011). In-
tuitively, Merge encodes subcategorization, while
Move long-distance movement dependencies.

MGs succinctly encode the sequence of Merge
and Move operations required to build the phrase
structure tree for a specific sentence into deriva-
tion trees (Michaelis, 1998; Harkema, 2001; Ko-
bele et al., 2007). For instance, Fig. 1a and Fig. 1b
compare these two kind of trees for a simplified
analysis of the sentence Steven likes Connie. In
the derivation tree (Fig. 1b), all leaf nodes are la-
beled by LIs, while unary and binary branching
nodes are labeled as Move or Merge, respectively.
Crucially, the main difference between the phrase
structure tree and the derivation tree is that in the
latter, moving phrases remain in their base po-

sition, and their landing site can be fully recon-
structed via the feature calculus. Thus, the final
word order of a sentence is not directly reflected
in the order of the leaf nodes in a derivation tree.

Importantly, MG derivation trees form a regular
tree language, and thus — modulo a more com-
plex mapping from trees to strings — can be re-
garded as a simple variant of context-free gram-
mars (CFG), which have been studied extensively
in the computational parsing literature. This is the
crucial insight behind Stabler’s top-down parser.

2.2 MG Parsing

Stabler’s (2013) parser for MGs is a variant of a
standard depth-first, top-down parser for CFGs: it
takes as input a sentence represented as string of
words, hypothesizes the structure top-down, veri-
fies that the words in the structure match the input
string, and outputs a tree encoding of the sentence
structure. Basically, the parser scans the nodes
from top to bottom and from left to right; but since
the surface order of lexical items in the derivation
tree is not the phrase structure tree’s surface or-
der, simple left-to-right scanning of the leaf nodes
yields the wrong word order. Thus, while scanning
the nodes, the MG parser must also keep tracking
the derivational operations which affect the linear
word order.

Without delving too much in technical details,
the parsing procedure can be outlined slightly
more clearly as follows: I) hypothesize the top of
structure and add nodes downward (toward words)
and left-to-right; II) if move is predicted, it triggers
the search for mover⇒ build the shortest path to-
wards predicted mover; III) once the mover has



been found, continue from the point where it was
predicted (Kobele et al., 2013).

Essential to this procedure is the role of mem-
ory: if a node is hypothesized at step i, but can-
not be worked on until step j, it must be stored
for j − i steps in a priority queue. To make the
traversal strategy easy to follow, I adopt Kobele
et al.’s (2013) notation, in which each node in the
tree is annotated with an index (superscript) and an
outdex (subscript). Intuitively, the annotation indi-
cates for each node in the tree when it is first con-
jectured by the parser (index) and placed in the
memory queue, and at what point it is considered
completed and flushed from memory (outdex). In
the rest of the paper I adopt an annotated, simpli-
fied version of derivation trees, with internal nodes
explicitly labelled and dashed arrows indicating
movement relations (as shown in Fig. 1c).1

Finally, note that in Stabler’s original formula-
tion the parser is equipped with a search beam dis-
carding the most unlikely predictions. In this paper
though, I follow Kobele et al. (2013) in ignoring
the beam and assuming that the parser is equipped
with a perfect oracle, which always makes the
right choices when constructing a tree. This ide-
alization is clearly implausible from a psycholin-
guistic point of view. However, it is made with
a precise purpose in mind: to ignore the cost of
choosing among several possible predictions and,
by assuming a deterministic parse, to focus on
the specific contribution of syntactic complexity
to processing difficulty. In Sec. 3 I will discuss
how assuming an idealized parser is exactly what
makes Italian RCs an interesting test case.

2.3 Complexity Metrics
In order to allow for psycholinguistic predictions,
the behavior of the parser must be related to pro-
cessing difficulty via a linking theory, which here
takes the form of complexity metrics. Specifically,
I employ complexity metrics that predict process-
ing difficulty based on how the geometry of the
trees built by the parser affects memory usage.

Extending previous work on MG parsing (Ko-
bele et al., 2013; Graf and Marcinek, 2014; Gerth,
2015), Graf et al. (2017) distinguish three cog-
nitive notions of memory usage: I) how long a
node is kept in memory (tenure); II) how many
nodes must be kept in memory (payload); or III)

1Note that, due to the fact that intermediate landing sites
for moved phrases do not affect the traversal strategy, they
not explicitly marked by movement arrows.

how many bits a node consumes in memory (size).
Tenure and payload for each node n in the tree
can be easily computed via the node annotation
scheme of Kobele et al.: a node’s tenure is equal
to the difference between its index and its outdex;
the payload of a derivation tree is computed as
the number of nodes with a tenure strictly greater
than 2. Defining size in an informal way is slightly
trickier, as its original conception was based on
how information about movers is stored by Sta-
bler’s top-down parser (for a technical discussion,
see Graf et al., 2015). Procedurally, the size of the
parse item corresponding to each node n can be
simply computed by exploiting our simplified rep-
resentation of derivation trees: it corresponds to
the number of nodes below n that have a move-
ment arrow pointing to somewhere above n.2 For
example, referring to the annotated tree in Fig. 1c,
the size of vP is 1, while the size of VP is 0.
In practice, size encodes how many nodes in a
derivation consume more memory because a cer-
tain phrase m moves across them.

With the exception of payload, these concepts
are not exactly metrics we can use to directly com-
pare derivations. What we are missing is a way for
them to be applied to a given derivation as mea-
sures of overall processing difficulty. In order to
do so, these notions of memory have been used to
define a vast set of complexity metrics measuring
processing difficulty over a full derivation tree. In
this paper, we look at Italian relative clause asym-
metries using the full set of 1600 metrics as de-
fined in Graf et al. (2017). However, in what fol-
lows we only give a general intuition of how such
metrics can be defined, and we refer the reader to
Graf et al. for the detailed formal definitions. Im-
portantly, just a few of these metrics are enough to
account for the contrasts we are interested in.

Kobele et al. (2013) show that tenure can be as-
sociated to quantitative values by defining metrics
ike MAXT := max({tenure-of(n)}) and SUMT
:=

∑
n tenure-of(n). MAXT measures the max-

imum amount of time any node stays in mem-
ory during processing, while SUMT measures the
overall amount of memory usage for all nodes
whose tenure is not trivial (i.e., > 2). It thus
captures total memory usage over the course of
a parse. Building on these findings, Graf and
Marcinek (2014) show that MAXT (restricted to

2Thus, as a reviewer correctly notes, size is sensitive to
the hierarchical distance between the filler and the gap.



pronounced nodes) makes the right difficulty pre-
dictions for several phenomena, such as right em-
bedding vs. center embedding, nested dependen-
cies vs. crossing dependencies, as well as a set of
contrasts involving relative clauses.

Extending Graf & Marcinek’s (2014) analysis
of relative clause constructions, Graf et al. (2015)
argue for the insufficiency of MAXT as a single,
reliable metric. They then introduce several new
metrics, inspired by those defined for tenure. For
example, they define an the equivalent of SUMT
for size, which measures the overall cost of main-
taining long-distance filler-gap dependencies over
a derivation. Let M be the set of all nodes of
derivation tree t that are the root of a subtree un-
dergoing movement. For each m ∈ M , i(m) is
the index of m and f(m) is the index of the high-
est Move node that m’s subtree is moved to. Then
SUMS is defined as

∑
m∈M i(m)− f(m).

Graf et al. (2015) also introduce the idea of
ranked metrics of the type 〈M1,M2, . . . ,Mn〉,
similar to constraint ranking in Optimality The-
ory (Prince and Smolensky, 2008): a lower ranked
metric matters only if all higher ranked metric
have failed to pick out a unique winner (e.g., if
two constructions result in a tie over MAXT). This
suggestion is fully explored in Graf et al. (2017),
which show that when complexity metrics are al-
lowed to be ranked in such a way the total num-
ber of possible metrics quickly reaches an astro-
nomical size. However, surveying the variety of
previously modeled phenomena, the authors also
suggest that the number of metrics truly needed
to account for human processing contrasts can be
reduced to a small number of core metrics (partic-
ularly, they point toward a combination of MAXT
and SUMS), an hypothesis that seems supported
by recent work on several different constructions
(Liu, 2018; Lee, 2018).

3 Modeling Italian RCs

3.1 Processing Asymmetries

Restrictive relative clauses (RCs) in Italian have
been the focus of extensive experimental stud-
ies from the perspective of comprehension (Vol-
pato and Adani, 2009), production (Belletti and
Contemori, 2009), and acquisition (Volpato, 2010;
Friedmann et al., 2009). Italian speakers conform
to the general cross-linguistic preference for sub-
ject over object RCs (Frauenfelder et al., 1980;
King and Kutas, 1995; Schriefers et al., 1995,

a.o.), so that (1) is easier to process than (2):

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
“The horse that chased the lions” SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
“The horse that the lions chased” ORC

Interestingly, Italian also allows for sentences
like (3), ambiguous between a SRC interpretation
(3a) and an ORC interpretation (3a) with the em-
bedded subject expressed postverbally:

(3) Il cavallo che ha inseguito il leone
The horse that has chased the lion
a. “The horse that chased the lion” SRC

b. “The horse that the lion chased” ORCp

Although postverbal subject constructions are
very common in Italian, in such cases native
speakers show a marked preference for the SRC
interpretation over the ORCp one. Sentences like
(3) can be disambiguated by grammatical cues like
subject-verb agreement:

(4) Il cavallo che hanno inseguito i leoni ORCp
The horse that have chased the lions
“The horse that the lions chased”

However, even in unambiguous cases like (4),
studies report increased efforts with ORCp, lead-
ing to the following difficulty gradient: SRC <
ORC < ORCp (Utzeri, 2007, a.o.).

The contrast between SRCs and ORCs has been
well studied in the past, and it is compatible
with a variety of models, such as surprisal (Levy,
2013), cue-based memory retrieval (Lewis and Va-
sishth, 2005), the active filler strategy (Frazier,
1987), the Dependency Locality Theory (Gibson,
1998, 2000), the Competition Model (Bates and
MacWhinney, 1987), the Minimal Chain Principle
(De Vincenzi, 1991), among many. The increased
complexity reported for ORCs with postverbal
subjects comes as a challenge to some of these
models (e.g., for the Competition model and De-
pendency Locality Theory; Arosio et al., 2009).
However, their processing profile can be explained
in terms of economy of gap prediction and cost
of structural re-analysis, due to the possible am-
biguity in ORCps at the embedded subject site —
where the parser has the choice of either postu-
lating a null pronominal subject or establishing
a filler-gap dependency. Importantly though, the
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Figure 2: Annotated derivation trees for right-embedding (a) SRC, (b) ORC, and (c) ORCp.

aim of this paper is not to argue for the correctness
(or lack thereof) of these accounts. Our purpose is
to extend previous evaluations of memory metrics
for a top-down MG parser as a reliable model of
processing difficulty.

As discussed above, the MG parser has already
been successful in accounting for RC asymme-
tries cross-linguistically (Graf et al., 2017; Zhang,
2017). Thus, Italian RCs are the perfect next step
in understanding the plausibility of the model, al-
lowing us to build on the insights provided by
previous work while incrementally exploring new
structural configurations. In particular, the fact that
by assumption the MG parser ignores structural

ambiguity (thus potential costs associated to re-
analysis) and deterministically builds only the cor-
rect parse, makes ORCs with postverbal subjects
an intriguing test case.

3.2 Syntactic Assumptions
The central tenant of the MG model is to take syn-
tactic commitments seriously, so to explore how
different aspects of sentence structure drive pro-
cessing cost. The choice of a syntactic analysis
is then particularly important. In line with most
of the psycholinguistic literature on Italian RCs,
this paper’s analysis of postverbal subjects follows
Belletti and Leonini (2004, a.o.). Specifically, I as-
sume that in ORCp constructions the subject DP



[i leoni] is merged in preverbal subject position
Spec,vP, and then raised to a Spec,Focus position
in the clause-internal vP periphery. The whole ver-
bal cluster is raised to a clause-internal Spec,Topic
position; and an expletive pro is base generated
in Spec,TP and co-indexed with the postverbal
subject (Fig. 2c).3 Furthermore, again consistently
with the Italian psycholinguistic literature (Arosio
et al., 2017, a.o.), we adopt a promotion analy-
sis of relative clauses (Kayne, 1994). That is to
say, the head noun starts out as an argument of
the embedded verb and undergoes movement into
the specifier of the RC. The RC itself is treated as
an NP, and selected by the determiner that would
normally select the head noun in more traditional,
head-external accounts (Chomsky, 1977).

4 Modeling Results

4.1 Core Results

I tested the parser performance on right-branching
restrictive RCs of the form (pro) vedo il cavallo
[RC che ...] (I see the horse [RC that ...]) — the
RC head raising to the matrix object position, and
the embedded relative clause either an SRC (1),
an ORC (2), or an ORCp (4). The corresponding
derivation trees, annotated by the MG parser with
index and outdex values at each node, are shown
in Fig. 2a, Fig. 2b, and Fig. 2c respectively. Re-
call that by assumption the parser is equipped with
a perfect oracle, and that the complexity metrics
are only sensitive to structural differences (i.e., the
MG model is blind to agreement relationships).
Contrasting (1) and (4) is then equivalent to con-
trasting (3a) and (3b). Thus, to reiterate the central
tenants of the approach, these comparisons aim to
model both the preference for SRC in ambiguous
cases, and the overall increased processing diffi-
culty of ORCps, just in terms of structural differ-
ences.

Modeling results show that the parser correctly
predicts the gradient of difficulty observed for Ital-

3Technically, Belletti & Leonini (2004) assume that VP,
not vP, raises to Spec,Topic. This follows from the authors
adopting Collins (2005)’s smuggling analysis of passives di-
rectly. However, if we follow the traditional view of active
verbs moving out of their base position to adjoin to little v,
this analysis cannot hold as it would derive the wrong word
order. Thus, I raise the whole vP cluster to Topic. This also
seems to be in the spirit of what suggested by Belletti and
Contemori (2009). But note that the modeling results in the
following section would remain mostly unchanged even if we
were to leave the vP shell in its base position, while both verb
and object raise above.

ian RCs (SRC < ORC < ORCp), across a vari-
ety of complexity metrics.4 In fact, the increased
difficulty of ORCps over both SRCs and ORCs
is predicted by every base (i.e., non ranked) met-
rics defined in (Graf et al., 2017). However, since
the relationship between complexity metrics and
the structure of a specific derivation tree is sub-
tle, a detailed discussion of why each metric fares
the way it does is not feasible within the scope of
this paper. In what follows, I focus on two metrics
that have been noted in previous studies as con-
sistent predictors of processing difficulty: MAXT
and SUMS.

The fact that MAXT (SRC: 8/che; ORC: 11/ha;
ORCp:16/Foc) succeeds in predicting the reported
processing preferences is encouraging, given the
past success of this metric on many different con-
structions.5 In particular, observe how the string-
driven traversal strategy of the MG parser makes
tenure sensitive to minor structural differences. In
the SRC, che is introduced at step 15. Since, based
on information in the input string, the parser is
looking for the the subject DP il cavallo, che has
to be kept in memory until the latter is found.
Thus, it is flushed from memory at step 23. In
the ORC, che is also put in memory at step 15.
However, since the head of the relative clause is
the embedded object, the parser will discard the
standard CFG top-down strategy, ignore the sub-
ject DP, and keep expanding nodes until il cavallo
is found. Thus, che cannot be flushed from mem-
ory until step 25.

The difference between SRC and ORC also
highlights how tenure interacts with movement.
Once che has been found in the SRC tree, the next
node in the stack is ha, which can be discharged
from memory immediately after. In the ORC how-
ever, the parser still has to find the subject DP.
Thus, ha has to be kept in memory for the three
additional steps that are required to conjecture and
scan il leone.

Similarly, the maximum tenure recorded on the
Foc head in ORCp highlights the cost of the ad-
ditional movement steps postulated for this con-
struction. The Foc node needs to wait until both
the RC object and subject are built and scanned,
before being itself discharged from the memory

4https://github.com/CompLab-StonyBrook/mgproc.
5These predictions hold even if we ignore tenure on un-

pronounced nodes — as suggested by Graf et al. (2017)
— since we would obtain (SRC: 8/that; ORC: 11/has;
ORCp:14/that.

https://github.com/CompLab-StonyBrook/mgproc
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Figure 3: Annotated derivation trees for left-embedding (a) SRC (b) ORC and (c) ORCp.

queue.

4.2 Additional Simulations

From one side, the successful predictions made
by MAXT are a welcome result, as they con-
firm the sensitivity of tenure-based metrics to fine-
grained structural details. From the other though,
one might wonder exactly how much these differ-
ences depend on the specific case study we are
modeling. In this section, I partially address this
issue by looking at variations in the construction
of the RCs, and at two more processing asymme-
tries involving Italian post-verbal subjects.6 I re-
turn to the general issue of the sensitivity of the
MG results to syntactic choices in Sec. 5.

4.2.1 Left-Embedding RCs
Due to the string-driven nature of its traversal
strategy, the MG parser is peculiarly sensitive to
the depth of left- vs. right-embedding construc-
tions. To control for this, I tested the parser pre-

6Trees for these simulations can be found in Appendix A.

dictions on sentences of the form Il cavallo [RC

che ...] salta la siepe (The horse [RC that ...]
jumps the fence, Fig. 3), with the head noun rais-
ing to the subject position in the matrix clause.
Here, MAXT predicts that SRC and ORC should
have the same processing complexity (they tie),
since their memory differences are flattened by
the increased tenure on the matrix v’ (the Merge
node expanding the matrix vP). The tenure of this
node depends on the size of the matrix subject —
thus, on the size of the relative clause. Since the
size of the SRC and of the ORC is the same (the
only thing changing being the site of extraction),
MAXT for the whole sentence will never vary be-
tween the two constructions. This issue is solved
by SUMS, which correctly predicts SRC < ORC,
as well as the SRC/ORC < ORCp contrast.

Interestingly, MAXT also correctly predicts
the increased difficulty of ORCps in these left-
embedding cases. As seen above, MAXT flattens
the differences in clauses with subject-modifying
SRC/ORCs because the size of the RCs in subject



position is identical. This is not the case for OR-
Cps, due the sequence of projections and move-
ment steps involved in deriving postverbal sub-
jects from the base SVO order. Thus, while MAXT
in these sentences in still measured on the matrix
v’ (28), this value is also picking up on the addi-
tional steps required to derive the internal structure
of the ORCp construction.

4.2.2 Postverbal Subjects in Matrix Clauses
In order to understand the complexity of the gram-
matical assumptions made for the postverbal sub-
jects, we can look at processing asymmetries of
postverbal constructions outside of RC environ-
ments. Consider Italian declarative sentences with
a lexically empty subject position, like in (5).

(5) Ha chiamato Gio
Has called Giovanni
a. “He/she/it called Gio” SVO

b. “Gio called” VS

Without contextual/discourse cues, sentences
like (5) are structurally ambiguous between a null-
subject interpretation (5a) and a postverbal subject
one (5b), with a marked processing preference for
(5a) as compared to (5b) (De Vincenzi, 1991).

As summarized in Tbl. 1, both MAXT and
SUMS predict the correct preferences under Bel-
letti and Leonini (2004)’s analysis, as the Top and
Foc heads have to wait for the whole vP to be
found, before they can be discharged from mem-
ory themselves (cf. Fig. 4 and Fig. 5).

4.2.3 Unaccusatives vs. Unergatives
Finally, it is interesting to look at declarative sen-
tences containing intransitive verbs of two classes:
unaccusatives (6) and unergatives (7).

(6) È arrivato Gio
Is arrived Gio
“Gio arrived” Unaccusative

(7) Ha corso Gio
Has ran Gio
“Gio ran” Unergative

While on the surface these sentences look very
similar, they differ in that the subject originates in
postverbal position for unaccusatives but in pre-
verbal position for unergatives (Belletti, 1988).
Importantly, De Vincenzi (1991) reports faster
reading times and higher comprehension accuracy
for (6) over (7), a preference that is again correctly
captured both by MAXT and SUMS (cf. Fig. 6

Clause Type MaxT SumS
obj. SRC 8/che 18
obj. ORC 11/ha 24
obj. ORCp 16/Foc 31
subj. SRC 21/v’ 37
subj. ORC 21/v’ 44
subj. ORCp 28/v’ 56
matrix SVO 3/ha/v’ 7
matrix VOS 7/Top/Foc 11
VS unacc 2/vP 3
VS unerg 7/Top/Foc 11

Table 1: Summary of MAXT (value/node) and SUMS
by construction. Obj. and subj. indicate the landing site
of the RC head in the matrix clause.

and Fig. 7). In particular, due to unaccusative sub-
jects being base-generated postverbally, MAXT
for these constructions is the lowest it can be (2,
the tenure of any right sibling which is predicted
and immediately discharged).

5 Discussion

The success of a top-down parser in modeling the
processing difficulties of Italian RCs adds support
to the MG model as a valuable theory of how pro-
cessing cost is tied to structure.

As some reviewers point out though, one poten-
tial concern with the plausibility of the approach is
in the degrees of freedom that are left to the model.
In particular, the processing predictions depend
on the interaction of three factors: the parsing
strategy, the syntactic analysis, and the complex-
ity metrics. Here, I put aside the choice of parsing
strategy (but see Hunter, 2018; Stanojević and Sta-
bler, 2018), and briefly address concerns about the
remaining two factors.

Due the large number of existing metrics, it is
conceivable that some combination of syntactic
analysis and metric could have explained any other
processing ranking among sentences. Similarly, it
is possible that any syntactic analysis would make
the right (i.e., empirically supported) predictions
with some metric. Both these possibilities would
undermine the relevance of this kind of model-
ing. Luckily, this does not seem to be the case.
In fact, previous work has ruled out the vast ma-
jority of the existing metrics, by showing their
insufficiency in accounting for some crucial con-
structions across a variety of possible grammatical
analyses (Graf et al., 2017). Thus, it seems that



underspecification is not an issue in practice.
The results in this paper are indeed consis-

tent with these observations, as they show SUMS
as a reliable complexity metric. Importantly, as
subject-modifying SRCs and ORCs only tie on
MAXT, these findings are also consistent with
Graf et al. (2017)’s hypothesis that SUMS should
be used a secondary metric to adjudicate between
constructions, after they tie on MAXT.7

A second, reasonable concern is how much the
correct predictions depend on the specific syntac-
tic analysis of choice. Due to the richness of ex-
isting analyses and to space constraints, in this pa-
per I only considered an analysis of Italian RCs
and postverbal constructions which had been ex-
tensively referred to in the psycholinguistic liter-
ature. To partially address this concern though, I
showed how SUMS and MAXT not only make the
right predictions for RC constructions under a few
different syntactic configurations, but they also
correctly account for postverbal subject asymme-
tries in different kind of sentences. Nonetheless,
an important future enterprise will be to look at
alternative approaches to postverbal subject con-
figurations, such as right dislocation (Antinucci
and Cinque, 1977; Cardinaletti, 1998), or leftward
scrambling (Ordóñez, 1998). Note though that
these analyses all assume additional movement de-
pendencies in the structure of ORCps compared to
clauses with preverbal subjects. Given what this
paper taught us about SUMS and MAXT, it seems
probable that such dependencies would also be
picked up by these metrics.

Independently on the specific predictions of the
parser for alternative analyses though, the contri-
butions of this line of inquiry would be twofold.
From one side, it will improve our understand-
ing of the MG model, by clarifying which as-
pects of sentence structure drive the parser’s per-
formance, and how they weight on the recruit-
ment of memory resources as measured by differ-
ent metrics. Secondly, grounded in the discrimina-
tive power given to MAXT and SUMS by their suc-
cess across empirical phenomena, comparing the
predictions made by the parser for different anal-
yses of the same construction might help adjudi-
cate between competing theoretical assumptions,
as was the original goal of Kobele et al. (2013).

Clearly, the fact that the parser relies on an ide-
7 SUMS by itself does not seem to be enough, as it fails to

predict the right preferences for contrasts like English right
vs. center embedding (Graf et al., 2017).

alized deterministic search strategy is one of the
(potentially) most contentious assumption of the
MG model, and could thus be used as yet another
objection to the plausibility of the linking theory.
As already mentioned, the goal is not to claim this
as a comprehensive model of processing difficulty,
as a cognitively realistic theory would see multiple
factors interact with each other to derive the cor-
rect contrasts (Demberg and Keller, 2008; Bren-
nan et al., 2016, a.o.). In principle though, the MG
parser can be integrated with several of these addi-
tional factors (e.g., uncertainty; Hunter and Dyer,
2013; Yun et al., 2015). Crucially, the main advan-
tage of the MG model is its transparent specifica-
tion of the parser’s behavior, which clarifies the ef-
fects of structural complexity on memory burden
and would allow us to separate them from other
effects contributing to processing load.

Moreover, while uncertainty is clearly a funda-
mental component of the human sentence process-
ing system, the fact that an account deliberately
abstracting away from all ambiguity can explain
effects that would usually be attributed to it is an
intriguing result. A fascinating open question is
then whether we can characterize those phenom-
ena where ambiguity really is the decisive factor,
and cannot be “eliminated” from the model.

Finally, another advantage of having a compu-
tational model which provides a testable link be-
tween syntactic theory and behavioral data, is that
it allows us to formally integrate structural hy-
potheses in existing psycholinguistic theories in a
way that leads to precise quantitative predictions.
However, as one reviewer observes, the complex-
ity metrics exploited by the MG parser rely on
very weak assumptions about the nature of human
memory. In a sense, this could be considered a
perk, as it leaves the model open to connections
with a variety of sentence processing theories. In
another sense though, this lack of cognitive plau-
sibility weakens the impact of the approach, as it
is often difficult to connect its results to more gen-
eral concerns in the sentence processing literature.
An important future research direction will thus be
to re-evaluate the existing complexity metrics in
light of psychological insights about human mem-
ory mechanisms (cf. Zhang, 2017).
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Figure 4: Annotated derivation tree for the SVO sen-
tence in (5a)
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Figure 5: Annotated derivation trees for the VS sen-
tences in (5b)
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Figure 6: Annotated derivation trees for the unac-
cusative sentence in (6)
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Figure 7: Annotated derivation trees for the unergative
sentence in (7)


