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ABSTRACT

A large amount of literature has shown that the type of quantifier used in a
sentence significantly affects the verification procedure and the cognitive re-
sources employed to arrive at a truth-judgment. Interestingly, few studies have
explored effects of quantifier type on cognitive load during comprehension
alone, in order to distinguish between quantifier characterization and verifi-
cation procedures. In this study, we address this distinction by examining the
processing of quantified sentences in an auditory/visual verification task. We
show quantifier-type influences on working memory usage as measured by
variations in pupil size during encoding and verification, and we relate these
results to theories of quantifier meaning grounded in the approximate num-
ber system, and to previous results on quantifier complexity based on precise
counting strategies.

1 Introduction
Barwise & Cooper (1981) define generalized quantifiers as noun phrases that func-
tionally assert some property of a particular set and assign a truth value to it. For
instance, to assign a truth-value to a sentence like Every dot is blue, one has to un-
derstand the meaning of every, and identify the primary property to be related to it
(dots being blue).

Thus, in building a cognitive theory of quantifiers’ interpretation, it is essen-
tial to have an insightful theory of how their meaning is computed. Several studies
support the idea that the semantic representation of a quantifier (e.g., its canoni-
cal specification, cf. Lidz et al. (2011)) plays a determinative role in identifying
the corresponding verification procedure — at least when a transparent strategy
is available. In this perspective, it has been argued that the relation between the
truth-conditional properties of generalized quantifiers and the verification strate-
gies said quantifiers are associated with could be better understood by establishing
cross-disciplinary links to logic, numerical processing, visual search, and magni-
tude comparison (Paterson et al. 2009; Degen & Tanenhaus 2016; Pietroski 2010;
Steinert-Threlkeld et al. 2015).

In this study, we are particularly interested in understanding the role that the se-
mantic representation of different quantifiers plays in engaging cognitive resources
during comprehension and verification.
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1.1 Number Sense and Verification Strategies
The study of how humans comprehend numerical information (both precise and
approximate) has played a crucial role in the investigation of how the meaning
of different quantifiers influences the specification of verification strategies. One
influential model in numerical cognition — suggested to explain the representa-
tion of imprecise cardinalities, and thus the ability to compare quantities without
counting — is the Approximate Number System (ANS). This is supposed to be
an evolutionarily cognitive resource that generates representations of numerosity
across multiple modalities (e.g., visual objects, auditory beeps, a.o.), and develops
in human infants without need of explicit training (Feigenson et al. 2004). Sev-
eral works have explored the idea that quantifier comprehension can be conceptu-
alized with the aid of numerical comparison rooted in the ANS (Dehaene 1999;
Halberda & Feigenson 2008), suggesting that children are capable of activating the
ANS to comprehend quantifiers from early age, and that they learn how to master
the interface between the semantics of quantifiers and more precise quantity repre-
sentations as they grow older.

Building on these assumptions, much work has been done to understand whether
the verification strategies used for quantifier comprehension can be explained in
terms of cardinality comparison, with no need for precise counting. This line of
investigation has provided evidence for the fact that aspects of cognition like the
ANS enforce constraints on the representational vocabulary of the lexicon itself,
particularly when it comes to the implicit representation of generalized quanti-
fiers, and to the complexity of their evaluation procedures (Pietroski et al. 2009;
Lidz et al. 2011; Heim et al. 2012; Heim et al. 2016; Shikhare et al. 2015). More-
over, these results highlight how there seem to be verification procedures that are
more costly (in terms of cognitive resources) than others.

1.2 Quantifier Meaning and Computational Complexity
In order to account for the variability among verification procedures associated
to different quantifiers, past studies have separated quantifiers in different logic
classes. However, the link between logic classes, verification procedures, and de-
mands on cognitive resources is far from obvious. This calls for a computational
theory of quantifiers’ complexity with a transparent mapping to processing and
cognitive requirements. Following these ideas, the semantic automata model asso-
ciates quantifiers to computational mechanisms (automata) implementing specific
recognition procedures employed for the verification process, via an algorithmic
approach based on counting (Van Benthem 1986).

The essential intuition behind this model is that the more complex the automa-
ton, the longer the reaction time and working memory involvement will be, for
subjects asked to solve the verification task. In this sense, quantifiers are ordered
based on the complexity of the machines required for their verification. If we sort
quantified expressions in the following groups (Clark & Grossman 2007):

• Aristotelian: all, every, some, no, ...
• Numerical: at least three, at most four, between eight and ten, ...
• Parity: a even number, an odd number
• Proportional: most, more than half, ...



an automata characterization then predicts the following complexity hierarchy: Aris-
totelian < Parity < Numerical < Proportional. Recent behavioral experiments have
reported evidence in support of such a hierarchy (Szymanik & Zajenkowski 2010;
Zajenkowski et al. 2011; Zajenkowski et al. 2013; Steinert-Threlkeld et al. 2015).
Notably, and in contrast with the assumptions made by ANS-based accounts, the
verification algorithms specified by this model always rely on precise counting.

Interested in how the verification of generalized quantifiers interacts with (pre-
cise vs approximate) number sense, Shikhare et al. (2015) showed that adults use
numerical estimation and comparison strategies biased by the quantifier semantics,
and that numerical estimation seems to play an essential role in evaluating quan-
tifier sentences under time pressure. Therefore, while it appears that the semantic
automata model makes the right predictions in terms of processing complexity of
quantifiers, significant work remains to be done in order to obtain a complete pic-
ture of the relationship between truth-conditions, numerical estimation, verification
strategies, and memory load.

Curiously, while the amount of work focusing on how differences among quan-
tifiers affect verification procedures is extensive, few studies have probed cognitive
distinctions during comprehension alone, in the attempt to inform our understand-
ing of how the default encoding (i.e. the canonical meaning specification) of differ-
ent quantifiers affects the recruitment of cognitive resources before any information
relevant to verification is made available.

1.3 Current Study
This study is motivated by the belief that a better understanding of the default en-
coding of distinct quantifiers is essential if one wants to build a theory of how mean-
ing is related to verification via cognitive resources. In fact, although the evidence
for a link between representations of truth-conditions and verification is convincing,
it is also evident that studying verification tasks alone can provide only some infor-
mation about comprehension effects due to the encoding of distinct quantifiers. For
instance, in the case of comparative versus superlative quantifiers, it has been ob-
served that people might use similar verification strategies but the process of com-
prehension might be more complex for superlative quantifiers (Dotlacil et al. 2014).
In addition, Szymanik & Zajenkowski (2011) suggest that monotonicity effects go
in diverging directions with respect to comprehension and verification, depending
on the cognitive task. Thus, we ask (a) whether there are effects of quantifier types
on working memory during early comprehension, before subjects are allowed to
engage in verification; and (b) whether they pattern as predicted by computational
accounts of quantifier complexity.

Consistently with the main contrasts explored in previous studies, we selected
quantifiers from four different categories (Aristotelian, Proportional, Numerical,
Cardinal) according to their logical characterizations. We then evaluated the cogni-
tive complexity of these quantifiers by using pupillometry: event-related measures
of the variations in subjects’ pupil size. Many studies have illustrated a correspon-
dence between pupillary dilation and working memory load (Stanners et al. 1979;
Laeng et al. 2012; Nuthmann & Van Der Meer 2005; Karatekin et al. 2004; Ahern
& Beatty 1979; Robison & Unsworth 2019). Variations in pupil size have also been



widely used as an estimate of working memory in visual search tasks (Just et al.
2003), and have been shown to be sensitive to local resource demands imposed by
sentence comprehension (Engelhardt et al. 2010). Thus, pupillometry seems then
to be a privileged technique to probe working memory demands as associated to the
comprehension of quantified expressions.

Participants judged auditory stimulus sentences of the type <Quantifier> of the
dots are <Color>, against a visual display showing systematically varied propor-
tions of two sets of colored dots. For numerical quantifiers, the numerical referents
were varied systematically in order to probe cardinality effects on pupil size and
response time. Crucially, the onset of the visual display was delayed until the onset
of the disambiguating predicate, to allow us to measure increases in pupil size rel-
ative to each quantifier during encoding — prior to any disambiguating or search
cue (e.g., the color predicate; the visual scene) — and during verification. Propor-
tions of colors in the visual arrays were varied so to avoid fixed counting strategies.
Differently from previous studies, and to avoid approximation strategies promoted
by external time constraints, participants were allowed to provide a response at any
time after the presentation of the visual information.

2 Methods
2.1 Apparatus
Eye movements and pupil area were recorded using an SR Research EyeLink 1000
desktop system using 35 mm lens, at a sampling frequency of 500 Hz. After cali-
bration, the average calibration error was 0.5°. Stimuli were presented on an iMac
(21.5 inch diagonal, LED-backlit display with IPS technology; 1920×1080 resolu-
tion; 60 Hz refresh rate). Participants sat at a distance of approximately 90 cm from
the screen in a room with a dim light setup, and used a chin rest to stabilize their
head. The camera itself was 60 cm away from the eyes, so 30 cm forward from the
screen. Only the right eye was tracked. The experiment was designed and presented
using SR Research Experiment Builder.

2.2 Participants
All participants signed consent forms approved by Stony Brook University insti-
tutional review board (IRB). A total of 21 healthy adults (age: 20 − 35; male:4;
female:17) participated in the study in exchange for extra credits. All were right-
handed native English speakers with normal or corrected-to-normal vision. Of these
participants, 2 were excluded for failure to complete all trials (two blocks out of
four), and 2 were excluded for substantial pupil-loss due to blinks or inaccurate
eye-tracking calibration. Accuracy for the whole task was expected to reach a min-
imum of at least 85%. All participants fulfilled this criterion. Thus, 17 participants
(male:3; female:14) were included in the final analyses.

2.3 Procedure
The experiment consisted of a short practice session (4 trials) followed by four ex-
perimental blocks. Each block was balanced so to contain approximately the same
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of the quantifier “many,” for example, as compared to its close relatives like “more than
half,” is greater in terms of interindividual variability. Hackl (2009) in his investigation
put forth that the proportional quantifier “most” triggers a distinct behavioral strategy when
compared to “more than half,” which can be attributed to the semantic differences between
them. “Most” can be assumed to be the superlative form of “many” while “more than half”
is its comparative form. From a numerical perspective, for “more than half” there is a
fixed reference to compare between sets, namely, “half.” Therefore, although the compre-
hension strategy for “more than half” triggers complex strategies, one could assume simi-
larity in the processing steps across individuals. However, for “many” no such reference is
provided externally and thus could depend on the subjective interpretation of each individ-
ual regarding its meaning. It is conceivable that participants might adopt the most common
strategy to focus on the reference set, that is, the target color mentioned in the quantifier

(A)

(B)

Fig. 1. Experimental design of the study (A). Auditory stimulus sentences included numerical quantifiers (at
least seven, at least thirteen, at most seven, and at most thirteen) or proportional quantifiers (many, few) and
were of the type “<Quantifier> of the circles are <color>,” followed by a visual display, showing varied
proportions of yellow and blue circles with a constant total (n) of 20. The proportion of yellow circles and
blue circles was systematically varied, characterized by the number of circles (c) to be estimated in the target
color (TarCol) and ranging from 5 up to 15, as well as the complementary non-target color characterized by
the estimation parameter (r) ranging from 15 to 5. Time course of individual trials (B). Each trial starts with
a fixation cross, followed by the auditory sentence for 2.6 s. Then a visual display with the parametrically
varied proportions is presented for 1 s, followed by a visual mask for 2 s. Participants are asked to respond
per trial, if the auditory sentence matches the visual display or not, via a button press on one of two response
keys. RTs are recorded from the onset of the visual display until the offset of the visual mask (maximum
time for response: 3 s). The overall duration of a trial is 6.6 s.
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<Q> of the dots

Figure 1: Experimental design.

number of trials for each quantifier. At the beginning of each block, a standard 9-
point grid calibration and validation of the gaze recording were completed. Since
participants were allowed to rest after each block, calibration was repeated after
each break, and repeated again at a beginning of a trial in case of noticeable track-
ing errors. Drift-correct checks were performed before every-trial.

Each trial began with a fixation-cross. After 500 ms participants listened to the
first auditory phase of an item: <Quantifier> of the dots, while the fixation-cross
stayed on. In all trials, predicate onset (are <Color>) was played exactly 4000 ms
after quantifier onset. This time window was chosen to allow pupil responses due to
the quantifier type to reach their peak (approx. 1200 ms; Mathôt et al. (2018)) before
subjects could engage in verification. The onset of the disambiguating predicate
was timed to the presentation of a visual display with a random distribution of
colored circles (yellow or blue) against a gray background. Subsequently, a blank
gray screen was presented for 20 ms to allow for blinks and account for screen-
refresh time. The same set of auditory stimuli and visual displays was used for all
participants in an individually randomized order — both the order of each block
and the internal order of items within block were randomized across participants.

Participants were asked to express their judgment about the truth-value of the
sentence by pressing a key (f or j — false and true, respectively) after the presen-
tation of display. Participants were instructed to react as quickly as possible, but no
time constraint was given for the decision phase, and the visual display stayed on
until a decision was reached. The average length of the whole task was 1 hour. The
experimental design and the time course of individual trials are shown in Figure 1.

2.4 Materials
We prepared quantified sentences comprising nine quantifiers divided in four main
categories: Aristotelian (all, no, some), Proportional (most, more than half ), Nu-
merical (at least n, at most n), and Parity (an even number, an odd number) quanti-
fiers (see Table 1). Each quantifier was associated to two target colors (blue, yellow)
in two verification conditions (true, false). Since either of the two colors could be
the target color, each quantifier-color combination was presented for 6 trials in true
condition, and 6 trials in false condition. Thus, each quantifier was presented 24



Quantifier Magnitude Quantifier Category
All

AristotelianNo
Some
At least n n = 2, . . . , 7; 9 . . . 14 NumericalAt most n n = 2, . . . , 7; 9 . . . 14
An even number of ParityAn odd number of
Most ProportionalMore than half

Table 1: Quantifiers grouped by category

times, for a total of 216 trials.
The visual displays consisted of varying yellow and blue dots, and were drawn

using Matlab Psychtoolbox. While the total number of dots in the display was kept
constant and equal to 16, proportions of blue and yellow dots were systematically
varied based on the truth-conditional properties of the associated quantifier for a
total of 14 proportions. Dots were randomly distributed across proportions and
matched for size (20 pixels). Luminance for yellow (RGB: 110) and blue (RGB:
001), as well as the background color (grey: identical among fixation-cross, blank
resting screen, and dot arrays), was controlled for all images and set at half of
the luminance of white. To control for gaze shifts, the visual array was centered
with respect to the gray background. The raw material for the auditory stimuli was
recorded in a single take using a Shure SM-54 microphone and a Zoom H6 digital
recorder, from a male native speaker of American English in his mid 20s.

2.5 Data analysis
SR Research DataViewer was used to output trial reports for three distinct interest
periods: baseline (0-500 ms), encoding (500-4500 ms), and verification (4500 ms
to key-press).1 Data points corresponding to blinks were filtered out, together with
10 samples before and after the blink (Mathôt et al. 2018). Data analysis was sub-
sequently carried out in R. Trials were excluded if more than 10% of data points
were missing due to blinks, and a participant was excluded if more than 5% of the
trials had been filtered out. For each interest period and each trial, pupil size values
exceeding 2 standard deviation (mean ± SD) were replaced with the mean pupil
size value of the associated condition (Mathôt et al. 2018; Attar et al. 2016). More-
over, incorrect responses were also excluded from the analysis. Finally, mean and
max pupil responses for encoding and verification were computed by subtracting
mean pupil baseline at each trial from mean and max. pupil size at each sample,
and then averaged across subjects and across trials. Quantifiers were scored individ-
ually and by type. Max and mean pupil response were analyzed separately for each
interest period (encoding and verification). Trivially, response times were analyzed
only for the verification phase, and computed from the onset of the color predi-
cate to button-press. For each interest period, we fit linear-mixed models with RT
or mean/max pupil response as dependent variables, Quantifier Category (4 levels)
and Proportion (14 levels) as fixed effects, and Participant as a random effect.

1Stimuli and raw data are available at https://github.com/aniellodesanto/PupillometryQuantifiers.



Quantifier Category Mean Accuracy (%) SD (%)
Aristotelian 97.1 16.66
Parity 94.5 22.68
Numerical 81.3 38.93
Proportional 98.46 12.29

Table 2: Accuracy Results

3 Results
3.1 Behavioral Results
As expected, the tasks were quite simple and subjects made overall few mistakes
(see Table 2). Accuracy was relatively lower for numerical quantifiers compared
to other categories, but no significant statistical effect of Quantifier Category was
found. Linear mixed effects model revealed significant effects on response times
both for Quantifier Category (F (3, 3189) = 662.23, p < 0.001) and Proportion
(F (15, 3189) = 11.37, p < 0.001). Post hoc Tukey comparison of means showed
faster response times for Aristotelian < Proportional < Parity/Numerical (see Fig. 2),
with no significant differences between RTs associated to Parity and Numerical
quantifiers (p < 0.986).

Figure 2: Comparisons of means by quantifier category for RT (in milliseconds)
during verification. Signif. codes (∗ ∗ ∗ : 0.001; ∗∗ : 0.01; ∗ : 0.05) are coded based
on the quantifier category of reference.

3.2 Pupillometry Results
3.2.1 Encoding
The linear mixed effects model and subsequent analysis of variance revealed signif-
icant effects of Quantifier Category on mean (F (3, 3190) = 7.36, p < 0.001) and
max (F (3, 3190) = 8.14, p < 0.001) pupil response during the encoding phase,
confirming that there were comprehension effects on working memory guided by
the semantic content of different quantifiers. As expected, since no visual display
was presented in this phase, we found no effects of Proportion (mean: F (15, 3190) =
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Figure 3: Comparisons of means by quantifier category for (a) mean and (b) max
pupil response (in arbitrary units) during encoding. Signif. codes (∗ ∗ ∗ : 0.001; ∗∗ :
0.01; ∗ : 0.05) are coded based on the quantifier category of reference.

0.86, p < 0.611; max: F (15, 3190) = 0.62, p < 0.858). Post hoc Tukey comparison
of means showed that quantifier effects cluster in two main groups, with Aristotelian
and Proportional quantifiers eliciting significantly smaller pupil responses than Par-
ity and Numerical ones (see Figure 3). No significant differences were found within
Aristotelian-Proportional (mean:p < 0.98; max:p < 0.50) and Parity-Numerical
(mean:p < 0.54; max: p < 0.90) clusters.

3.2.2 Verification
Significant effects were found of Quantifier Category on mean (F (3, 3189) = 5.117,
p < 0.01) and max (F (3, 3190) = 31.740, p < 0.001) pupil response during
verification. Maybe surprisingly, we also found no effects of Proportion (mean:
F (15, 3190) = 0.218, p < 0.611; max: F (15, 3190) = 1.091, p < 0.358) on
either mean nor max pupillary response. Post Tukey comparison of means again
showed significantly smaller pupil responses for Aristotelian-Proportional quanti-
fiers than for Parity and Numerical quantifiers (see Figure 4), with no significant
differences within Aristotelian-Proportional (mean:p < 0.16; max: p < 0.94) and
Parity-Numerical (mean:p < 0.63; max: p < 0.55) clusters, respectively.

4 Discussion
This paper presents an exploratory pilot study, employing recordings of pupil size
variation during a truth-value judgment task to better understand cognitive resources
underlying the processing of quantified sentences. In particular, we were interested
in exploring whether effects of different kinds of quantifiers (namely, Aristotelian,
Proportional, Numerical, and Parity) could be found during early encoding: a phase
in which subjects had heard a quantified expression, but had not yet been given ac-
cess to a disambiguating predicate or a visual scene to contrast the quantifier with.
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Figure 4: Comparisons of means by quantifier category for (a) mean and (b) max
pupil response (in arbitrary units) during verification. Signif. codes (∗∗∗ : 0.001; ∗∗ :
0.01; ∗ : 0.05) are coded based on the quantifier category of reference.

With respect to our main question, significant effects of Quantifier Category
on pupil response during the encoding period support the hypothesis that working
memory is in fact being modulated by quantifier meaning even before participants
could engage in any type of verification strategy. While our small data sample ad-
vices caution in the interpretation of these results, we believe that the paradigm we
employed highlights insightful patterns. A careful analysis of these effects can then
shed light on the default encoding of generalized quantifiers, and how it is related
to the recruitment of cognitive resources during verification.

It has been observed that Aristotelian quantifiers do not require precise esti-
mations of the cardinalities of the target sets to arrive at a truth-judgment. Thus,
they initially require relatively small cognitive resources, possibly associated to the
need for approximate comparisons. On the contrary, Parity and Numerical quan-
tifiers have consistently shown automatic access to specific numerical magnitudes
(Troiani et al. 2009). Since these quantifiers always presuppose precise numerical
comparisons, it is probable that the increase in pupil responses is indexing the ini-
tial recruitment of additional resources needed to retrieve the target numerical rep-
resentation and actively maintaining it in memory (Heim et al. 2016:a.o.). In this
perspective, the fact that no differences were found between Parity and Numerical
quantifiers across interest periods should also not be surprising (Troiani et al. 2009).
Finally, if the initial specification of Proportional quantifiers relies on approximate
comparisons between sets instead of precise one-to-one counting (Pietroski et al.
2009), we would expect the recruitment of resources associated to computing vague
numerical concepts with no need for precise magnitude maintenance. It is not sur-
prising then that the corresponding increase in working memory load as indexed by
pupil response would pattern similarly to Aristotelian quantifiers, and be smaller
than the one associated to numerical/parity quantifiers. Overall then, these effects
support the hypothesis that the initial specification of Aristotelian and Proportional
quantifiers recruits resources consistent with algorithms grounded in numerical es-



timation (possibly consistently with the assumptions of the ANS). Obviously, the
absence of a difference between the Aristotelian and Proportional conditions could
simply be due to our low sample size, and we should be careful in overextending
the interpretation of these results. Much work needs to be done to fully determine
whether Proportional quantifiers are represented in the same way as Aristotelian
quantifiers, or if there is some intermediate level of representation.

Finally, similar response patterns for mean pupil response and for max response
peak are found during the verification phase. RTs are also in line with this pattern:
Aristotelian quantifiers are associated to the shortest RTs, and Numerical/Parity
quantifiers to the longest ones. Together with the fact that pupil variation was still
not significantly affected by the proportions of target colors, these results suggest
that how the verification procedure is carried out for distinct quantifiers plays a less
crucial role in modulating cognitive load than previously reported.

Recall now that the complexity hierarchy proposed by the semantic automata
model sees Proportional quantifiers recruiting significantly more resources than Nu-
merical and Parity, and it is thus in contrast to the results presented in this paper. In
this sense, the pattern of RTs is particularly interesting, since it seems to contradict
previous studies reporting processing effects mirroring this hierarchy.

A few considerations have to be made in this regard. First, as mentioned before,
the link between RTs and cognitive load can be inaccurate, especially when a visual
task is involved (Attar et al. 2016). Particularly, recent results have cast doubt on
the fact that search performance (i.e. RTs) can be used as a good estimator of the
amount of working memory engaged in a specific task (Emrich et al. 2009:a.o.).
This suggests that RTs collected at the end of a decision task might not correspond
to the time at which the meaning of a statement is known to a participant, but might
be biased by additional processing due to factors specifically related to the search
task (Troiani et al. 2009).

In this perspective, it is interesting to give a more careful look to our own results.
While RTs for Proportional quantifiers overall pattern similarly to pupil responses
— and are significantly shorter than those for Numerical/Parity quantifiers — they
also show significant differences with Aristotelian quantifiers. This apparent mis-
match between pupil response and RTs is consistent with the idea that the amount of
working memory recruited for verification is mostly modulated by quantifier encod-
ing in the initial stages of comprehension, while response times are instead affected
by the length of the verification procedures. To verify the meaning of an expression
containing an Aristotelian quantifier it suffices to identify a single target element;
Proportional quantifiers are instead going to require approximate cardinalities of
large sets, thus leading to longer search over the visual scene.

These considerations also suggest that, while it is true that longer tasks require
longer maintenance of information in memory, this should not be taken to be equiv-
alent to an absolute increase in memory burden (in other words, holding something
memory for longer time is not equivalent to recruiting more memory resources at a
specific time). Then, we would predict that RTs for proportional quantifiers should
be longer, the closer the proportions of the target sets are to requiring precise nu-
merical comparisons. Although our design was not meant to conduct proportion-by-
proportion comparisons across quantifiers, we can see an effect consistent with this
prediction in Figure 5. Here, the RTs associated to Proportional quantifiers stick



close together with those for Aristotelian while the proportions of the target sets are
far from each other, but visibly increase towards numerical and parity quantifiers
when the proportions of the sets are close to each other.

Figure 5: Comparisons of RT by quantifier category (in milliseconds) and propor-
tions of colored dots (blue:yellow) during verification.

Relatedly, the semantic automata’s predictions have been observed to hold when
approximate numerical estimation is explicitly disfavored by the verification con-
text (e.g., the visual scene). In contrast, we compared proportional quantifiers over
a range of varying proportions. Furthermore, since we were interested in varying
the target magnitude while keeping the number of trials to a manageable amount,
numerical and parity quantifiers were accompanied by scenes close to the target
magnitude (e.g. at least three and a scene of four blue dots and twelve yellow dots).
Therefore, while we almost always allowed for approximate comparisons in the ver-
ification of proportional quantifiers, numerical and parity quantifiers were always
presented in a context that forced for precise counting.

As already discussed with respect to Figure 5, it is probable that in a set-up
where the verification strategies for proportional, parity, and numerical quantifiers
are fixed, and approximation strategies are overall disallowed, response times would
again pattern as predicted by the semantic automata model. On the other hand,
when precise counting is discouraged across quantifiers, we predict a replication
of this paper’s results. These hypotheses should be better investigated in future
studies, with particular focus on probing eventual differences between cognitive
load as measured by RTs and pupil response — for instance, by following the design
of Heim et al. (2012). Similarly, this study cannot fully rule out potential non-
semantic, low-level contributions to the difference between quantifier categories
(e.g., syllabic length of a quantified sentence). These limitations will have to be
carefully addressed in future work.
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