

Quantified Sentences as a Window into Prediction and Priming: An ERP Study

Aniello De Santo

Jon Rawski Amanda Yazdani John E. Drury

Stony Brook University aniello.desanto@stonybrook.edu aniellodesanto.github.io

> CLS 54 April 26, 2018

The Elevator Pitch

Previously on This Topic

- N400 insensitive to truth-value (Fischler et al. 1983);
- N400 modulated by truth-value when controlling for pragmatically unnatural uses of negation (Nieuwland & Kuperberg 2008).

In This Talk We (Aim To) ..

... unequivocally disambiguate truth-value and priming by examining the processing of simple quantified sentences.

We Also Discuss ..

- Early prediction effects tied to the truth-conditional properties of quantifiers;
- ► ERP markers of quantifier complexity.

The Elevator Pitch

Previously on This Topic

- N400 insensitive to truth-value (Fischler et al. 1983);
- N400 modulated by truth-value when controlling for pragmatically unnatural uses of negation (Nieuwland & Kuperberg 2008).

In This Talk We (Aim To) ...

... unequivocally disambiguate truth-value and priming by examining the processing of simple quantified sentences.

We Also Discuss ..

- Early prediction effects tied to the truth-conditional properties of quantifiers;
- ► ERP markers of quantifier complexity.

The Elevator Pitch

Previously on This Topic

- N400 insensitive to truth-value (Fischler et al. 1983);
- N400 modulated by truth-value when controlling for pragmatically unnatural uses of negation (Nieuwland & Kuperberg 2008).

In This Talk We (Aim To) ...

... unequivocally disambiguate truth-value and priming by examining the processing of simple quantified sentences.

We Also Discuss ...

- Early prediction effects tied to the truth-conditional properties of quantifiers;
- ERP markers of quantifier complexity.

Outline

- 1 N400 & Truth-value
- 2 Experimental Design
- 3 N400&Priming
- 4 Prediction Effects

5 Conclusions

Truth-value/Negation and the N400

Fischler et al. (1983)

Is the N400 modulated by falseness, or by semantic mismatches?

(B)

- True, Affirmative (TA): A robin / is / a bird.
- (2) True, Negative (TN):
- A robin / is not / a tree.

- (3) False, Affirmative(FA):
- (4) False, Negative (FN)
- A robin / is / a tree.
- A robin / is not / a bird.

Truth-value/Negation and the N400

Fischler et al. (1983)

Is the N400 modulated by falseness, or by conceptual mismatches?

(B)

- (1) True, Affirmative (TA): A robin / is / a bird.
- (2) True, Negative (TN):
- A robin / is not / a tree.
- (3) False, Affirmative(FA):
- (4) False, Negative (FN)
- A robin / is / a tree.
- A robin / is not / a bird.

Truth-value/Negation and the N400

Fischler et al. (1983)

Is the N400 modulated by falseness, or by conceptual mismatches?

(B)

- True, Affirmative (TA): True, Negative (TN):
- False, Affirmative(FA): (3)
- False, Negative (FN)

- A robin / is / a bird.
- (TN): A robin / is not / a tree、
 - A robin / is / a tree /
 - A robin / is not / a bird.

Fischler et al. (1983)

(1)	True, Affirmative (TA):	Arobin/is /abir	d.
(2)	True, Negative (TN):	A robin / is not / a tre	e.
(3)	False, Affirmative(FA):	A robin / is / a tre	e.
(4)	False, Negative (FN)	A robin / is not / a bir	·d.

⇒ N400 modulated by subject/predicate relatedness.
→ cf. Kounios & Holcomb (1992), Lüdtke et al. (2008) a.o.

N400

N400

Fischler et al. (1983)

\Rightarrow N400 modulated by subject/predicate relatedness.

 \rightarrow cf. Kounios & Holcomb (1992), Lüdtke et al. (2008) a.o.

Aim

Disentangle effects of truth-value and pragmatic licensing.

Aim

Disentangle effects of truth-value and pragmatic licensing.

1a

True

False

Pragmatically licensed negation

 Affirmative
 With proper equipment, scuba-diving is very safe...

 Negated
 With proper equipment, scuba-diving isn't very dangerous...

 Affirmative
 With proper equipment, scuba-diving is very dangerous...

 Negated
 With proper equipment, scuba-diving isn't very dangerous...

Pragmatically unlicensed negation

Bulletproof vests are very safe... Bulletproof vests aren't very dangerous... Bulletproof vests are very dangerous... Bulletproof vests aren't very safe...

 \Rightarrow N400 modulated by truth-value in pragmatically natural contexts.

In This Study

Aim

We want to disambiguate N400 effects of truth-value and priming.

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

- Shape/color combinations yield 8 conditions;
- Contrast ratio 7 : 7 (ALL/NONE) or 5 : 2 (MOST/SOME);
- False conditions: unprimed color/shape-predicates (i.e. red)
- Adult native English speakers (N = 10) asked for (mis)match judgments after each trial.

In This Study

Aim

We want to disambiguate N400 effects of truth-value and priming.

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

- Shape/color combinations yield 8 conditions;
- Contrast ratio 7 : 7 (ALL/NONE) or 5 : 2 (MOST/SOME);
- False conditions: unprimed color/shape-predicates (i.e. red)
- ► Adult native English speakers (N = 10) asked for (mis)match judgments after each trial.

V400&Priming

Hypothesis Table

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ▶ All ... Red (F>T)
- ▶ Some ... Red (F>T
- ► Most ... Red (F>T
- ▶ None ... Blue(F>T

- ▶ All.... Red (UP>P)
- ▶ Some... Red (UP>P)
- Most.... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ▶ All ... Red (F>T)
- ▶ Some ... Red (F>T)
- ▶ Most ... Red (F>T)
- ▶ None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- Most ... Red (UP>P)
- ▶ None... Red (UP>P)

J400&Priming

Hypothesis Table

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- ▶ Some ... Red (F>T)
- ▶ Most ... Red (F>T)
- ▶ None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- ▶ None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)

▶ None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)

None ... Blue(F>T)

- ► All ... Red (UP>P)
- ▶ Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- None ... Blue(F>T)

- ► All ... Red (UP>P)
- ► Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- None ... Blue(F>T)

- All ... Red (UP>P)
- Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- ▶ Most ... Red (UP>P)
- ▶ None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- Most ... Red (UP>P)
- ► None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)

None ... Blue(F>T)

- ► All ... Red (UP>P)
- Some... Red (UP>P)
- Most ... Red (UP>P)
- None... Red (UP>P)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)

None ... Blue(F>T)

- All ... Red (UP>P /F>T)
- Some... Red (UP>P /F>T)
- Most ... Red (UP>P /F>T)
- None... Red (UP>P /T>F)

ALL All of the squares are blues All of the squares are reds

NONE None of the squares are blues None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

N400 modulated by truth-value

- ► All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)

None ... Blue(F>T)

- All ... Red (UP>P /F>T)
- Some... Red (UP>P /F>T)
- Most ... Red (UP>P /F>T)
- None... Red (UP>P /T>F)

N400 Effects of Truth-Value and Priming

▶ ERPs (F−T) time-locked to predicate onset

Interim Summary: Priming and Truth-Value

N400 modulated by truth-value

- All ... Red (F>T)
- Some ... Red (F>T)
- Most ... Red (F>T)
- None ... Blue(F>T)

- All ... Red (UP>P/F>T)
- Some... Red (UP>P/F>T)
- Most ... Red (UP>P/F>T)
- None... Red (UP>P/T>F)

- Truth-value does not modulate N400 amplitude.
- N400 is driven by priming the expected continuation;

A Closer Look: N200 Effects

▶ ERPs (F−T) time-locked to predicate onset

Prediction Effects on the N200

Hypothesis

Prediction Effects on N200:

Phonological Mismatch Negativities (Connolly&Phillips,1994).

ALL

All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

ALL

All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

All of the squares are reds

ALL

All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

blue

All of the squares are reds

ALL

All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

ALL

All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

blue

All of the squares

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

None of the squares are reds

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

¬ blue None of the squares are reds

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

$\{ \textbf{yellow, red, green}, ... \}$

¬ blue

None of the squares are

ALL All of the squares are blues All of the squares are reds

NONE

None of the squares are blues None of the squares are reds

{yellow, red, green,...} ¬ blue None of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Some of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Some of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

yellow

Some of the squares are r

reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

yellow

Some of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

yellow

Some of the squares are

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Most of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Most of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Most of the squares are reds

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

Most of the squares are reds

14

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

blue

Most of the squares are

MOST

Most of the squares are blues Most of the squares are reds

SOME

Some of the squares are yellows Some of the squares are reds

- Complexity effects for higher-order quantifiers (McMillan et al. 2005; Szymanik, 2016)
- Time-locking signals (F-T) to the onset of the quantifiers...

Hypothesis: MOST doesn't cue early prediction effects ...

- Complexity effects for higher-order quantifiers (McMillan et al. 2005; Szymanik, 2016)
- Time-locking signals (F-T) to the onset of the quantifiers...

Hypothesis: MOST doesn't cue early prediction effects ...

- Complexity effects for higher-order quantifiers (McMillan et al. 2005; Szymanik, 2016)
- Time-locking signals (F-T) to the onset of the quantifiers...

Hypothesis: MOST doesn't cue early prediction effects ...

- Complexity effects for higher-order quantifiers (McMillan et al. 2005; Szymanik, 2016)
- Time-locking signals (F-T) to the onset of the quantifiers...

Hypothesis: MOST doesn't cue early prediction effects ...

Priming and Truth-Value

- ▶ N400 for ALL/SOME/MOST (F>T) relative to NONE (T>F)
- N400 is driven by priming the expected continuation

Prediction Effects on N200?

- early negativity for ALL/SOME vs. NONE/MOST (False>True, peaking ~ 200ms)
- ► PMMNs → anticipatory effects + truth-conditional properties of quantifiers

Markers of Quantifier Complexity?

- ▶ positivity for MOST > ALL/NONE/SOME ($\sim 350-450$ ms)
- complexity effects associated with initial encoding of quantifiers

Priming and Truth-Value

- ▶ N400 for ALL/SOME/MOST (F>T) relative to NONE (T>F)
- N400 is driven by priming the expected continuation

Prediction Effects on N200?

- early negativity for ALL/SOME vs. NONE/MOST (False>True, peaking ~ 200ms)
- \blacktriangleright PMMNs \rightarrow anticipatory effects + truth-conditional properties of quantifiers

Markers of Quantifier Complexity?

- ▶ positivity for MOST > ALL/NONE/SOME ($\sim 350-450$ ms)
- complexity effects associated with initial encoding of quantifiers

Priming and Truth-Value

- ▶ N400 for ALL/SOME/MOST (F>T) relative to NONE (T>F)
- N400 is driven by priming the expected continuation

Prediction Effects on N200?

- early negativity for ALL/SOME vs. NONE/MOST (False>True, peaking ~ 200ms)
- \blacktriangleright PMMNs \rightarrow anticipatory effects + truth-conditional properties of quantifiers

Markers of Quantifier Complexity?

- ▶ positivity for MOST > ALL/NONE/SOME ($\sim 350-450$ ms)
- complexity effects associated with initial encoding of quantifiers

Priming and Truth-Value

- ▶ N400 for ALL/SOME/MOST (F>T) relative to NONE (T>F)
- N400 is driven by priming the expected continuation

Prediction Effects on N200?

- early negativity for ALL/SOME vs. NONE/MOST (False>True, peaking $\sim 200 {\rm ms}$)
- \blacktriangleright PMMNs \rightarrow anticipatory effects + truth-conditional properties of quantifiers

Markers of Quantifier Complexity?

- ▶ positivity for MOST > ALL/NONE/SOME ($\sim 350-450$ ms)
- complexity effects associated with initial encoding of quantifiers

Selected References I

- Connolly, J. F., Phillips, N. A. (1994). Event-related potential components reflect phonological and semantic processing of the terminal word of spoken sentences. J. of Cognitive Neuroscience.
- 2 Fischler I., Bloom P., Childers D., Roucos S., Perry N. (1983) Brain potentials related to stages of sentence verification. *Psychophysiology*.
- **3** Kounios J, Holcomb P. (1992) Structure and process in semantic memory evidence from event-related brain potentials and reaction-times. J. of Experimental Psychology: General.
- 4 Lüdtke, J., Friedrich, C., Filippis, M., Kaup, B. (2008). Event-related Potential Correlates of Negation in a Sentence—Picture Verification Paradigm. Journal of Cognitive Neuroscience, 1355-1370.
- 5 McMillan, C. T., R. Clark, P. Moore, C. Devita, and M. Grossman (2005). Neural basis for generalized quantifier comprehension. *Neuropsychologia*.
- 6 Nieuwland MS, Kuperberg GR. (2008) When the truth isn't too hard to handle: An event-related potential study on the pragmatics of negation. Psychological science.
- 7 Szymanik, J. (2016). Quantifiers and Cognition: Logical and Computational Perspectives. Springer International Publishing.

Appendix

All conditions, time-locked to the predicate onset, midline electrode

Encoding vs. Verification

Neurobehavioral studies (McMillan et al. 2005)

Differences in brain activity.

- All quantifiers are associated with numerosity:
 - \rightarrow recruit right inferior parietal cortex.
- Only higher-order activate working-memory capacity:

 → recruit right dorsolateral prefrontal cortex.

Semantic Automata (Szymanik & Zajenkowsky 2009) FSA PDA

 $\{AII, Some\} < \{Even, Odd\} < \{At least n, At most n\} < \{Less than half, More than half, Most\}$

