



# Tiers and Relativized Locality Across Language Modules

Thomas Graf Aniello De Santo Jon Rawski Alëna Aksënova Hossep Dolatian Sedigheh Moradi Hyunah Baek Suji Yang Jeffrey Heinz

Stony Brook University aniello.desanto@stonybrook.edu https://aniellodesanto.github.io/

Parallels Between Phonology & Syntax Amsterdam, July 9, 2018

# The Subregular Group @ SBU



Jeff Heinz



**Thomas Graf** 



Alëna Aksënova



Hyunah Baek



Hossep Dolatian



Sedigheh Moradi



Jon Rawski



Suji Yang

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

### The Elevator Pitch

### Parallels between phonology and syntax?

- ► What would a computational linguist tell you? Probably none!
- What will I show you today? They are fundamentally similar!

#### The Take-Home Message

- ► Two kind of dependencies: local and non-local
- The core mechanisms are the same cross-domain, over the respective structural representations.
- ▶ Relativized locality plays a major role

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

### The Elevator Pitch

### Parallels between phonology and syntax?

- What would a computational linguist tell you? Probably none!
- What will I show you today? They are fundamentally similar!

#### The Take-Home Message

- ► Two kind of dependencies: local and non-local
- The core mechanisms are the same cross-domain, over the respective structural representations.
- ▶ Relativized locality plays a major role

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

#### The Elevator Pitch

#### Parallels between phonology and syntax?

- What would a computational linguist tell you? Probably none!
- What will I show you today? They are fundamentally similar!

### The Take-Home Message

- ► Two kind of dependencies: local and non-local
- The core mechanisms are the same cross-domain, over the respective structural representations.
- ▶ Relativized locality plays a major role

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusion.

### Outline

### 1 Local Dependencies

- ► In Phonology
- ► In Syntax

### 2 Non-local Dependencies

- ► In Phonology
- ► In Syntax

#### A methodological note

- Only phonotactics considered (no input-output mappings)
- ▶ Minimalist Grammars (Stabler 1997) as a model of syntax
- Formal language theory as a tool to assess parallelisms

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusion.

### Outline

### 1 Local Dependencies

- ► In Phonology
- ► In Syntax

### 2 Non-local Dependencies

- ► In Phonology
- ► In Syntax

#### A methodological note:

- Only phonotactics considered (no input-output mappings)
- ▶ Minimalist Grammars (Stabler 1997) as a model of syntax
- Formal language theory as a tool to assess parallelisms

# Local Dependencies in Phonology

### Word-final devoicing

Forbid voiced segments at the end of a word

- (1) a. \* rad
  - b. rat

### Intervocalic voicing

Forbid voiceless segments in between two vowels

- (2) a. \* faser
  - b. fazer

These patters can be described by strictly local (SL) constraints.

# Local Dependencies in Phonology

### Word-final devoicing

Forbid voiced segments at the end of a word

- (1) a. \* rad
  - b. rat

### Intervocalic voicing

Forbid voiceless segments in between two vowels

- (2) a. \* faser
  - b. fazer

These patters can be described by strictly local (SL) constraints.

### Example: Word-final devoicing

- Forbid voiced segments at the end of a word: \*[+voice]\$
- **German**: \*z\$, \*v\$, \*d\$ (\$ = word edge).

\$ rad \$ \$ rat \$

### Example: Intervocalic voicing

- Forbid voicess segments in-between two vowels: \*V[-voice]V
- German: \*ase, \*ise, \*ese, \*isi, ...

**\$** f a **s** e r **\$** 

\$ fazer\$

# Local Dependencies in Phonology are SL

### Example: Word-final devoicing

- Forbid voiced segments at the end of a word: \*[+voice]\$
- **► German**: \***z**\$, \***v**\$,\***d**\$ (\$ = word edge).

### Example: Intervocalic voicing

- ► Forbid voicess segments in-between two vowels: \*V[-voice]V
- ► **German**: \*ase, \*ise, \*ese, \*isi, ...

# Local Dependencies in Phonology are SL

### Example: Word-final devoicing

- Forbid voiced segments at the end of a word: \*[+voice]\$
- **► German**: \***z**\$, \***v**\$,\***d**\$ (\$ = word edge).

### Example: Intervocalic voicing

- ► Forbid voicess segments in-between two vowels: \*V[-voice]V
- ► German: \*ase, \*ise, \*ese, \*isi, ...

```
* $ f a s e r $ ok $ f a z e r $
```

Local Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

# What about Syntax?

#### We need a model for syntax ...

- ► Minimalist grammars (MGs) are a formalization of Minimalist syntax. (Stabler 1997, 2011)
- Operations: Merge and Move
- Adopt Chomsky-Borer hypothesis: Grammar is just a finite list of feature-annotated lexical items

#### Local dependencies in syntax

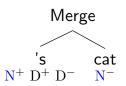
- ► Merge is a **feature-driven** operation category feature N<sup>-</sup>, D<sup>-</sup>, ... selector feature N<sup>+</sup>, D<sup>+</sup>, ...
- Subcategorization as formalized by Merge is strictly local.

Local Dependencies Non-local Dependencies Cognitive Parallelism Conclusion

# What about Syntax?

#### We need a model for syntax ...

- ► Minimalist grammars (MGs) are a formalization of Minimalist syntax. (Stabler 1997, 2011)
- Operations: Merge and Move
- Adopt Chomsky-Borer hypothesis: Grammar is just a finite list of feature-annotated lexical items


#### Local dependencies in syntax

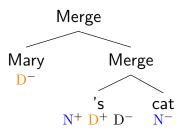
- ▶ Merge is a feature-driven operation: category feature N<sup>-</sup>, D<sup>-</sup>, ...
  - selector feature  $N^+$ ,  $D^+$ , ...
- Subcategorization as formalized by Merge is strictly local.

- ► category feature N<sup>-</sup>, D<sup>-</sup>, ...
- ▶ selector feature N<sup>+</sup>, D<sup>+</sup>, ...

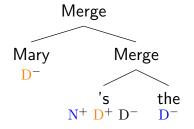
# Local Dependencies in Syntax

- ► category feature N<sup>-</sup>, D<sup>-</sup>, ...
- ▶ selector feature N<sup>+</sup>, D<sup>+</sup>, ...



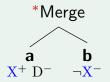

# Local Dependencies in Syntax

- ► category feature N<sup>-</sup>, D<sup>-</sup>, ...
- ▶ selector feature N<sup>+</sup>, D<sup>+</sup>, ...

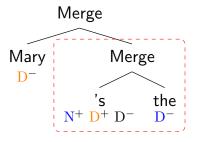

$$\begin{array}{cccc} \text{Mary} & \text{Merge} \\ \mathrm{D^-} & & \\ & \text{'s} & \text{cat} \\ & \text{N^+} & \text{D^+} & \text{D^-} & \text{N^-} \end{array}$$

# Local Dependencies in Syntax

- ► category feature N<sup>-</sup>, D<sup>-</sup>, ...
- ▶ selector feature N<sup>+</sup>, D<sup>+</sup>, ...

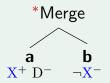



# Merge is SL (Graf 2012a)




### SL constraints on Merge

- ► We lift constraints from string n-grams to tree n-grams
- We get SL constraints over subtrees.




# Merge is SL (Graf 2012a)



### SL constraints on Merge

- ► We lift constraints from string n-grams to tree n-grams
- We get SL constraints over subtrees.



# Interim Summary

|           | Local | Data Structure |
|-----------|-------|----------------|
| Phonology | ?     | ?              |
| Syntax    | ?     | ?              |

Local phenomena modeled by n-grams of bounded size:

- computationally very simple
- learnable from positive examples of strings/trees
- plausible cognitive requirements

# Interim Summary

|           | Local | Data Structure |
|-----------|-------|----------------|
| Phonology | SL    | Strings        |
| Syntax    | SL    | Trees          |

Local phenomena modeled by n-grams of bounded size:

- computationally very simple
- learnable from positive examples of strings/trees
- plausible cognitive requirements

# Interim Summary

|           | Local | Non-local | Data Structure |
|-----------|-------|-----------|----------------|
| Phonology | SL    | ?         | Strings        |
| Syntax    | SL    | ?         | Trees          |

Local phenomena modeled by n-grams of bounded size:

- computationally very simple
- learnable from positive examples of strings/trees
- plausible cognitive requirements

# Unbounded Dependencies in Phonology

- ➤ Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (3) a. \* hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)
  - (4) a. LHLLLL
    - b. LLLLHL
    - c. \* LHLLHL
    - d. **LHHHHL**

# Unbounded Dependencies Are Not SL

- ► Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \*hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala

```
*$hasxintilawa[$
```

# Unbounded Dependencies Are Not SL

- ► Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \*hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala

```
*$hasxintilawa[$
```

- ➤ Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \*hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala

```
*$ha<mark>s</mark>xintilawa∫$
```

\$hasxintilawas\$

- ➤ Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \* hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala

```
*$ ha<mark>s</mark> xintila wa s
$ ha<mark>s</mark> xintila wa s
```

- ➤ Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \* hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala



▶ But: Sibilants can be arbitrarily far away from each other!

```
*$stajanowonwa∫$
```

# Unbounded Dependencies Are Not SL

- ➤ Samala Sibilant Harmony
  Sibilants must not disagree in anteriority.
  (Applegate 1972)
  - (5) a. \* hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫

#### Example: Samala

```
*$ has xintila wa \int \$
$ ha \intila wa \int \$
```

▶ But: Sibilants can be arbitrarily far away from each other!

```
*$<mark>s</mark>tajanowonwa∫$
```

# Locality Over Tiers

```
*$\stajanowonwa\s\$
```

- ► Sibilants can be arbitrarily far away from each other!
- **▶ Problem**: SL limited to locality domains of size *n*;

### Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

- Projection of selected segments on a tier T;
- ► Strictly local constraints over *T* determine wellformedness;
- ▶ Unbounded dependencies are local over tiers.

# Locality Over Tiers

```
*$|stajanowonwa∫|$
```

- ► Sibilants can be arbitrarily far away from each other!
- **▶ Problem**: SL limited to locality domains of size *n*;

### Tier-based Strictly Local (TSL) Grammars (Heinz et al. 2011)

- Projection of selected segments on a tier T;
- Strictly local constraints over T determine wellformedness;
- Unbounded dependencies are local over tiers.

# Unbounded Dependencies are TSL

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

#### Example: TSL Samala

```
* $hasxintilaw[$
```

# Unbounded Dependencies are TSL

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

### Example: TSL Samala

.....

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

#### Example: TSL Samala

.....

\* \$hasxintilaw[\$

- ▶ Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

### Example: TSL Samala

.....

\* \$hasxintilaw[\$

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[\$

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

## Example: TSL Samala

S

\* \$hasxintilaw[s

- ► Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][−ant],\*[−ant][+ant]

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa∫
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][-ant],\*[-ant][+ant]
  I.E. \*sʃ, \*sʒ, \*zʃ, \*zʒ, \*ʃs, \*ʒs, \*ʃz, \*ʒz

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][-ant],\*[-ant][+ant]
  I.E. \*sʃ, \*sʒ, \*zʃ, \*zʒ, \*ʃs, \*ʒs, \*ʃz, \*ʒz

- ▶ Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- What do we need to project? [+strident]
- What do we need to ban? \*[+ant][-ant],\*[-ant][+ant]
  I.E. \*sʃ, \*sʒ, \*zʃ, \*zʒ, \*ʃs, \*ʒs, \*ʃz, \*ʒz

- Let's revisit Samala Sibilant Harmony
  - (6) a. \* hasxintilawa
    - b. \* ha∫xintilawas
    - c. ha∫xintilawa∫
- ▶ What do we need to project? [+strident]
- What do we need to ban? \*[+ant][-ant],\*[-ant][+ant]
  I.E. \*sʃ, \*sʒ, \*zʃ, \*zʒ, \*ʃs, \*ʒs, \*ʃz, \*ʒz

► Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)

```
(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL
```

► Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)

```
(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL
```

► Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)

```
(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL
```



► Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)

```
(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL
```



► Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)

```
(7) a. LHLLLL
b. LLLLHL
c. *LHLLHL
d. LHHHHL
```

```
LHLLHL
*LHLLHL
```

## A TSL analysis for UTP (De Santo and Graf 2017):

- Project every H; project L iff immediately follows H
- ► Ban: HLH

# Example \*LHLLLL \*LHLLHL

- ▶ Most non-local dependencies in phonology are TSL
- What about syntax?

- ▶ Project every H; project L iff immediately follows H
- ► Ban: HLH



- ► Most non-local dependencies in phonology are TSL
- What about syntax?

- ▶ Project every H; project L iff immediately follows H
- ► Ban: HLH

```
HL

ok LHL LL

*LHLLHL
```

- ► Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH

```
Example

H L

*LHLLHL
```

- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH

```
HL

*LHLLHL
```

- Most non-local dependencies in phonology are TSL
- What about syntax?

- ▶ Project every H; project L iff immediately follows H
- ► Ban: HLH

```
HL

*LHLLHL

*LHLLHL
```

- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: **HLH**



- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH



- Most non-local dependencies in phonology are TSL
- What about syntax?

- ▶ Project every H; project L iff immediately follows H
- ► Ban: HLH



- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH



- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH



- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH



- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: **HLH**



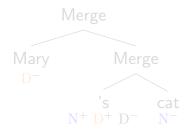
- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: **HLH**



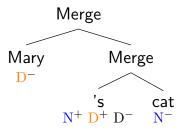
- Most non-local dependencies in phonology are TSL
- What about syntax?

- Project every H; project L iff immediately follows H
- ► Ban: HLH




- Most non-local dependencies in phonology are TSL
- What about syntax?

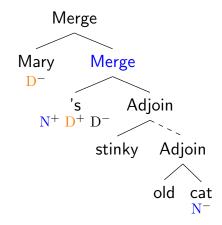
## Non-Local Dependencies in Syntax


#### Let's stick to core operations:

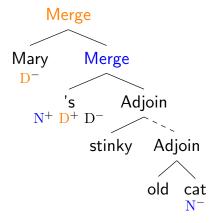
- Move
- Merge?



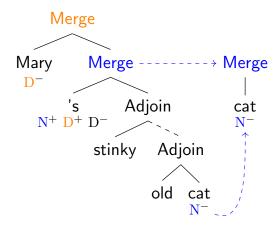
#### Let's stick to core operations:


- Move
- ► Merge?

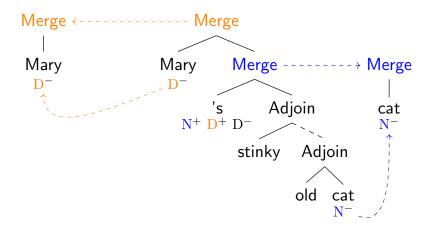


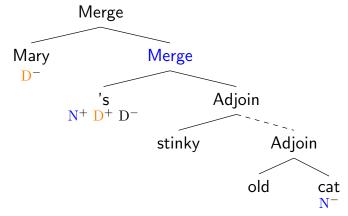

## Non-Local Dependencies in Syntax

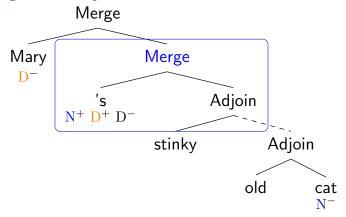
Let's stick to core operations:


- Move
- Merge: Unbounded adjunction Frey and Gärtner (2002); Graf (2017b)



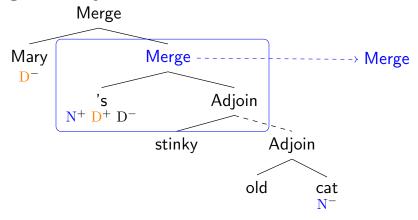

# TSL over Trees: Projecting Tiers





# TSL over Trees: Projecting Tiers

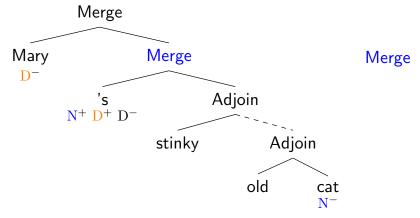


# TSL over Trees: Projecting Tiers

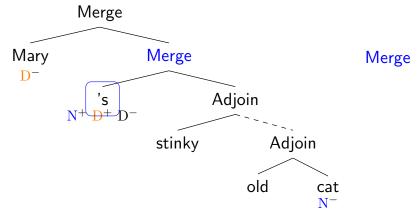




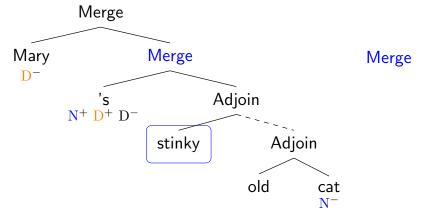




### A TSL grammar for Merge

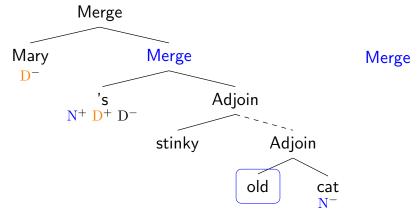
1 Project Merge iff a child has  $X^+$  (e.g. X = N)



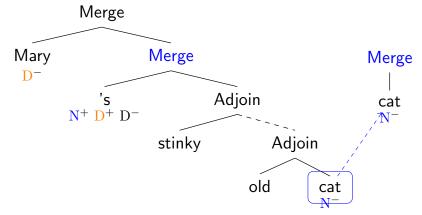

### A TSL grammar for Merge


1 Project Merge iff a child has  $X^+$  (e.g. X = N)

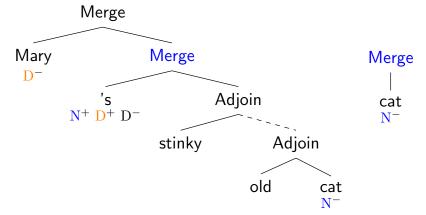



- 1 Project Merge iff a child has  $X^+$  (e.g. X = N)
- Project any node which has  $X^-$  (e.g. X = N)

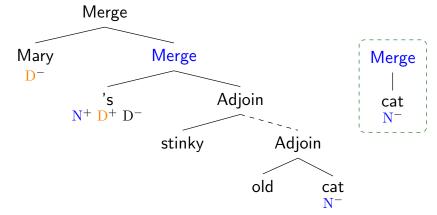



- 1 Project Merge iff a child has  $X^+$  (e.g. X = N)
- 2 Project any node which has  $X^-$  (e.g. X = N)

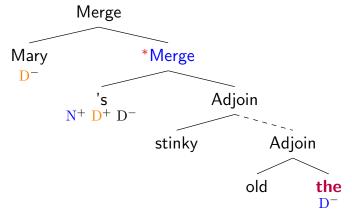



- 1 Project Merge iff a child has  $X^+$  (e.g. X = N)
- 2 Project any node which has  $X^-$  (e.g. X = N)

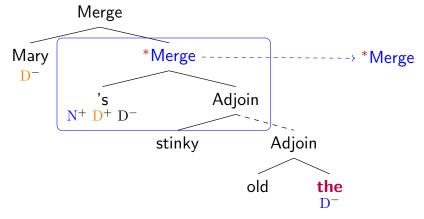



- I Project Merge iff a child has  $X^+$  (e.g. X = N)
- 2 Project any node which has  $X^-$  (e.g. X = N)

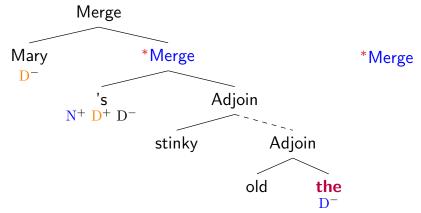



- 1 Project Merge iff a child has  $X^+$  (e.g. X = N)
- Project any node which has  $X^-$  (e.g. X = N)




- 1 Project Merge iff a child has  $X^+$  (e.g. X = N)
- Project any node which has  $X^-$  (e.g. X = N)




- Project Merge iff a child has  $X^+$  (e.g. X = N)
- Project any node which has  $X^-$  (e.g. X = N)
- No Merge without exactly one LI among its daughters.

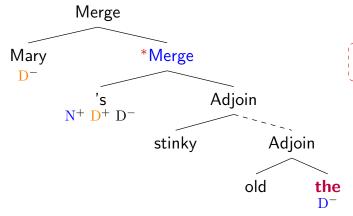



- **1** Project Merge iff a child has  $X^+$  (e.g. X = V)
- Project any node which has  $X^-$  (e.g. X = V)
- No Merge without exactly one LI among its daughters.

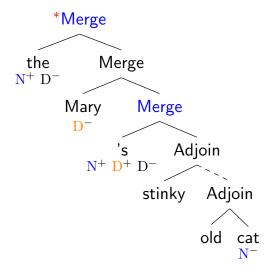


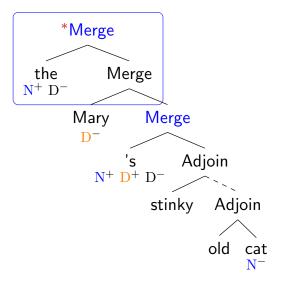
- 1 Project Merge iff a child has  $X^+$  (e.g. X = V)
- Project any node which has  $X^-$  (e.g. X = V)
- No Merge without exactly one LI among its daughters.

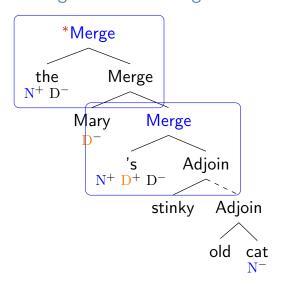



- Project Merge iff a child has  $X^-$  (e.g. X = V)
- Project any node which has  $X^+$  (e.g. X = V)
- No Merge without exactly one LI among its daughters.

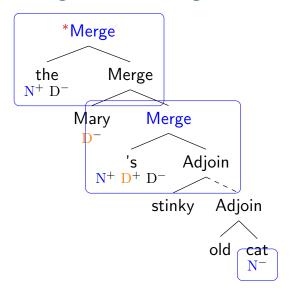



- Project Merge iff a child has  $X^-$  (e.g. X = V)
- Project any node which has  $X^+$  (e.g. X = V)
- No Merge without exactly one LI among its daughters.

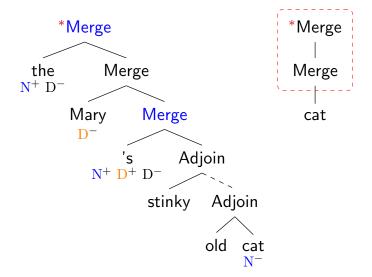

\*Merge


# Merge with Adjunction is TSL




- Project Merge iff a child has  $X^-$  (e.g. X = V)
- Project any node which has  $X^+$  (e.g. X = V)
- No Merge without exactly one LI among its daughters.






# TSL Merge: Understanding the Constraint







|           | Local | Non-local |   |
|-----------|-------|-----------|---|
| Phonology | ?     | ?         | _ |
| Syntax    | ?     | ?         |   |

Relativized Locality: Non-local dependencies are local over a simple relativization domain.

#### Strong Cognitive Parallelism Hypothesis

|           | Local | Non-local |   |
|-----------|-------|-----------|---|
| Phonology | SL    | ?         | _ |
| Syntax    | SL    | ?         |   |

Relativized Locality: Non-local dependencies are local over a simple relativization domain.

#### Strong Cognitive Parallelism Hypothesis

|           | Local | Non-local |
|-----------|-------|-----------|
| Phonology | SL    | TSL       |
| Syntax    | SL    | TSL       |

Relativized Locality: Non-local dependencies are local over a simple relativization domain.

#### Strong Cognitive Parallelism Hypothesis

|           | Local | Non-local | Data Structure |
|-----------|-------|-----------|----------------|
| Phonology | SL    | TSL       | Strings        |
| Syntax    | SL    | TSL       | Trees          |

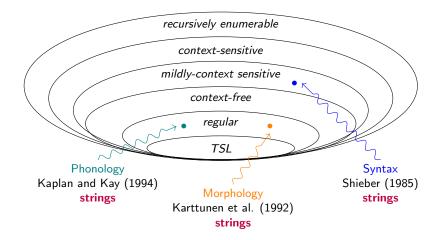
#### Relativized Locality:

Non-local dependencies are local over a simple relativization domain.

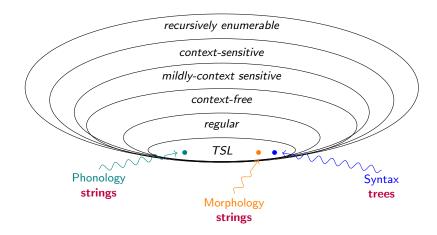
#### Strong Cognitive Parallelism Hypothesis

|           | Local | Non-local | Data Structure |
|-----------|-------|-----------|----------------|
| Phonology | SL    | TSL       | Strings        |
| Syntax    | SL    | TSL       | Trees          |

### Relativized Locality:


Non-local dependencies are local over a simple relativization domain.

### Strong Cognitive Parallelism Hypothesis


# A Bird's-Eye View of the Framework



## A Bird's-Eye View of the Framework



# A Bird's-Eye View of the Framework



Local Dependencies Cognitive Parallelism Conclusions

## Conclusion

## Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

### We gain a unified perspective on:

typology

- learnability
- cognition

ocal Dependencies Non-local Dependencies Cognitive Parallelism **Conclusions** 

### Conclusion

### Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

## We gain a unified perspective on:

- typology
  - × Intervocalic Voicing iff applied an even times in the string
  - $\times$  Have a CP iff it dominates  $\geq 3$  TPs
- learnability
- cognition

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

### Conclusion

### Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

### We gain a unified perspective on:

- typology
  - × Intervocalic Voicing iff applied an even times in the string
  - $\times$  Have a CP iff it dominates  $\geq 3$  TPs
- ► learnability
  Learnable from positive examples of strings/trees.
- cognition

ocal Dependencies Non-local Dependencies Cognitive Parallelism **Conclusions** 

### Conclusion

### Strong Cognitive Parallelism Hypothesis

Phonology, (morphology), and syntax have the **same subregular complexity** over their respective **structural representations**.

### We gain a unified perspective on:

- typology
  - × Intervocalic Voicing iff applied an even times in the string
  - $\times$  Have a CP iff it dominates  $\geq 3$  TPs
- learnability
   Learnable from positive examples of strings/trees.
- cognitionFinite, flat memory

ocal Dependencies Non-local Dependencies Cognitive Parallelism Conclusions

### Future Work

We are just getting started:

- autosegmental structures (Jardine 2017:i.a)
- morphological derivations (Chandlee 2017; Aksënova and De Santo 2017)
- mappings (Chandlee 2014; Chandlee and Heinz 2018:i.a.)
- syntax beyond Merge and Move (Graf 2017b; Vu 2018)

### Join the Enterprise!

- typological universals/gaps
- ► TSL-analyses of phenomena/counterexamples
- artificial language learning experiments
- new formal results
- and much more ...

### References I

- Aksënova, Alëna, and Aniello De Santo. 2017. Strict locality in morphological derivations. In *Proceedings of the 53rd Meeting of the Chicago Linguistic Society (CLS53)*. (to appear).
- Aksënova, Alëna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as tier-based strictly local dependencies. In *Proceedings of SIGMorPhon 2016*. To appear.
- Applegate, R.B. 1972. *Ineseno chumash grammar*. Doctoral Dissertation, University of California, Berkeley.
- Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation, University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.
- Chandlee, Jane. 2017. Computational locality in morphological maps. *Morphology* 27:599–641.
- Chandlee, Jane, and Jeffrey Heinz. 2018. Strict locality and phonological maps. *Linguistic Inquiry* 49:23–60.
- De Santo, Aniello, and Thomas Graf. 2017. Structure sensitive tier projection: Applications and formal properties. Ms., Stony Brook University.
- Epstein, Samuel D., Erich M. Groat, Ruriko Kawashima, and Hisatsugu Kitahara. 1998. *A derivational approach to syntactic relations*. Oxford: Oxford University Press.

#### References II

- Fowlie, Meaghan. 2013. Order and optionality: Minimalist grammars with adjunction. In *Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13)*, ed. András Kornai and Marco Kuhlmann, 12–20.
- Frey, Werner, and Hans-martin Gärtner. 2002. On the treatment of scrambling and adjunction in minimalist grammars. In *In Proceedings, Formal Grammar?02*. Citeseer.
- Gärtner, Hans-Martin, and Jens Michaelis. 2010. On the treatment of multiple-wh-interrogatives in Minimalist grammars. In *Language and logos*, ed. Thomas Hanneforth and Gisbert Fanselow, 339–366. Berlin: Akademie Verlag.
- Graf, Thomas. 2012a. Locality and the complexity of Minimalist derivation tree languages. In Formal Grammar 2010/2011, ed. Philippe de Groot and Mark-Jan Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227. Heidelberg: Springer. URL http://dx.doi.org/10.1007/978-3-642-32024-8\_14.
- Graf, Thomas. 2012b. Movement-generalized Minimalist grammars. In LACL 2012, ed. Denis Béchet and Alexander J. Dikovsky, volume 7351 of Lecture Notes in Computer Science, 58–73. URL http://dx.doi.org/10.1007/978-3-642-31262-5\_4.
- Graf, Thomas. 2012c. Tree adjunction as Minimalist lowering. In *Proceedings of the* 11<sup>th</sup> International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), 19–27.

### References III

- Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics.

  Doctoral Dissertation, UCLA. URL

  http://thomasgraf.net/doc/papers/PhDThesis\_RollingRelease.pdf.
- Graf, Thomas. 2014a. Late merge as lowering movement in Minimalist grammars. In *LACL 2014*, ed. Nicholas Asher and Sergei Soloviev, volume 8535 of *Lecture Notes in Computer Science*, 107–121. Heidelberg: Springer.
- Graf, Thomas. 2014b. Models of adjunction in Minimalist grammars. In *Formal Grammar 2014*, ed. Glynn Morrill, Reinhard Muskens, Rainer Osswald, and Frank Richter, volume 8612 of *Lecture Notes in Computer Science*, 52–68. Heidelberg: Springer.
- Graf, Thomas. 2017a. Grammar size and quantitative restrictions on movement. In Proceedings of the Society for Computation in Linguistics (SCiL) 2018, 23–33.
- Graf, Thomas. 2017b. Why movement comes for free once you have adjunction. In Proceedings of CLS 53. URL http://ling.auf.net/lingbuzz/003943, (to appear).
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In *Proceedings of the 49th Annual Meeting of the* Association for Computational Linguistics, 58–64. URL http://www.aclweb.org/anthology/P11-2011.
- Hunter, Tim. 2015. Deconstructing merge and move to make room for adjunction. Syntax 18:266–319.

### References IV

- Hunter, Tim, and Robert Frank. 2014. Eliminating rightward movement: Extraposition as flexible linearization of adjuncts. *Linguistic Inquiry* 45:227–267.
- Hyman, Larry M. 2011. Tone: Is it different? The Handbook of Phonological Theory, Second Edition 197–239.
- Jardine, Adam. 2017. On the logical complexity of autosegmental representations. In Proceedings of the 15th Meeting on the Mathematics of Language, ed. Makoto Kanazawa, Philippe de Groote, and Mehrnoosh Sadrzadeh, 22–35. London, UK: Association for Computational Linguistics.
- Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity in language and grammar. Doctoral Dissertation, UCLA. URL http://home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf.
- Kobele, Gregory M. 2008. Across-the-board extraction and Minimalist grammars. In Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and Related Frameworks.
- Kobele, Gregory M. 2010. On late adjunction in Minimalist grammars. Slides for a talk given at MCFG+ 2010.
- Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In *LACL 2011*, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of *Lecture Notes in Artificial Intelligence*, 129–144.

### References V

- Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2012. Memory resource allocation in top-down Minimalist parsing. In *Proceedings of Formal Grammar* 2012.
- McMullin, Kevin. 2016. *Tier-based locality in long-distance phonotactics: Learnability and typology*. Doctoral Dissertation, Uniersity of British Columbia.
- Pasternak, Robert. 2016. Memory usage and scope ambiguity resolution. Qualifying paper, Stony Brook University.
- Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.
- Stabler, Edward P. 2006. Sidewards without copying. In Formal Grammar '06, Proceedings of the Conference, ed. Gerald Penn, Giorgio Satta, and Shuly Wintner, 133–146. Stanford: CSLI.
- Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford handbook of linguistic Minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford University Press.
- Stabler, Edward P. 2013. Two models of minimalist, incremental syntactic analysis. *Topics in Cognitive Science* 5:611–633.
- Vu, Mai Ha. 2018. Towards a formal description of npi-licensing patterns. Proceedings of the Society for Computation in Linguistics (SCiL) 2018 154–163.

# Tier-Based Strictly Local Morphology







- Work by Alëna Aksënova, Thomas Graf, and Sophie Moradi.
- ▶ It seems that morphology is also TSL. (Aksënova et al. 2016)
- ► Morphology ≡ Morphotactics of underlying forms but see (Aksënova and De Santo 2017) on derivations
- ▶ We are unaware of any non-TSL patterns in this realm.
- ► Tight typology, explains gaps

# Example: Circumfixation in Indonesian

- ▶ Indonesian has circumfixation with no upper bound on the distance between the two parts of the circumfix.
- (8) maha siswa big pupil 'student'

- (9) \*(ke-) maha siswa \*(-an) NMN- big pupil -NMN 'student affairs'
- Requirements: exactly one ke- and exactly one -an

Tier<sub>1</sub> contains all NMN affixes
Tier<sub>0</sub> contains all morphemes
m-grams \$an, ke\$, keke, anan

### Example: Circumfixation in Indonesian

- ► Indonesian has circumfixation with no upper bound on the distance between the two parts of the circumfix.
- (8) maha siswa big pupil 'student'

- (9) \*(ke-) maha siswa \*(-an) NMN- big pupil -NMN 'student affairs'
- Requirements: exactly one ke- and exactly one -an

Tier<sub>1</sub> contains all NMN affixes
Tier<sub>0</sub> contains all morphemes
n-grams \$an, ke\$, keke, anan

### Example: Swahili vyo

Swahili *vyo* is **either a prefix or a suffix**, depending on presence of negation. (?)

'doesn't read'

```
(10) a. a- vi- soma -vyo
SBJ:CL.1- OBJ:CL.8- read -REL:CL.8

'reads'
b. a- si- vyo- vi- soma
SBJ:CL.1- NEG- REL:CL.8- read -OBJ:CL.8
```

# Example: Swahili vyo [cont.]

- (11) a. \*a- vyo- vi- soma SBJ:CL.1- REL:CL.8- OBJ:CL.8- read
  - b. \*a- vyo- vi- soma -vyo
    SBJ:CL.1- REL:CL.8- OBJ:CL.8- read -REL:CL.8
  - c. \*a- si- vyo- vi- soma SBJ:CL.1- NEG- REL:CL.8- OBJ:CL.8- read -vyo REL:CL.8-
  - d. \*a- si- vi- soma -vyo
    SBJ:CL.1- NEG- OBJ:CL.8- read REL:CL.8-

# Example: Swahili vyo [cont.]

#### Generalizations About vyo

- may occur at most once
- must follow negation prefix si- if present
- ▶ is a prefix iff *si* is present

```
Tier<sub>1</sub> contains vyo, si, and stem edges #
Tier<sub>0</sub> contains all morphemes

n-grams vyovyo, vyo##vyo "at most one vyo"
vyosi, vyo##si "vyo follows si"
si##vyo, $vyo## "vyo is prefix iff si present"
```

# **Explaining Typological Gaps**

Restriction to TSL can also explain some typological gaps.

### **General Strategy**

- Attested patterns A and B are TSL.
- ▶ But combined pattern A+B is not attested.
- ► Show that A+B is not TSL.

# Example: Compounding Markers

- Russian has an infix -o- that may occur between parts of compounds.
- Turkish has a single suffix -si that occurs at end of compounds.
- (12) vod -o- voz -o- voz water -COMP- carry -COMP- carry 'carrier of water-carriers'
- (13) türk bahçe kapı -sı (\*-sı) turkish garden gate -COMP (\*-COMP) 'Turkish garden gate'

#### New Universal

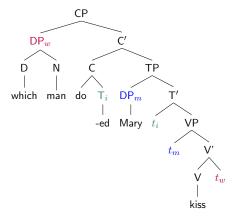
If a language allows unboundedly many compound affixes, they are **infixes**.

# Example: Compounding Markers [cont.]

Russian and Turkish are TSL.

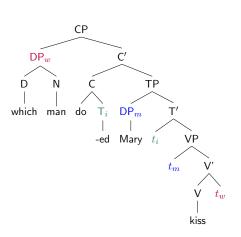
```
Tier<sub>1</sub> COMP affix and stem edges \# Russian n-grams oo, $0, 0$ Turkish n-grams sisi, $si, si\#
```

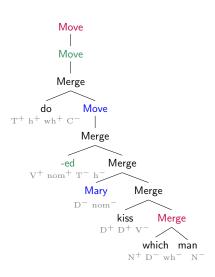
- ▶ The combined pattern would yield Ruskish: stem $^{n+1}$ -si $^n$
- ► This pattern is not regular and hence **not TSL either**.


# Interim Summary: Morphology

- ▶ While we know less about morphology than phonology at this point, it also seems to be TSL.
- ► Even complex patterns like Swahili *vyo* can be captured.
- ► At the same time, we get **new universals**:

Bounded Circumfixation No recursive process can be realized via circumfixation.


- We can reuse tools and techniques from TSL phonology, including learning algorithms.
- ▶ The cognitive resource requirements are also comparable.


### MGs & Derivation Trees



Phrase Structure Tree

### MGs & Derivation Trees





Phrase Structure Tree

**Derivation Tree** 

### Constraints on Move

#### What about Move?

Suppose our MG is in single movement normal form

i.e. every phrase moves at most once.

Then movement is regulated by two constraints. (Graf 2012a)

#### Constraints on Movement

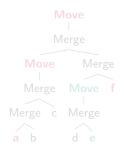
Move Every head with a negative Move feature is dominated by a matching Move node.

SMC Every Move node is a closest dominating match for exactly one head.

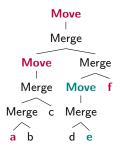
### Constraints on Move

What about Move?

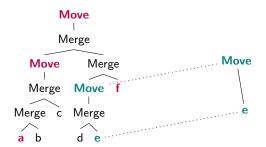
Suppose our MG is in **single movement normal form**, i.e. every phrase moves at most once.


Then movement is regulated by two constraints. (Graf 2012a)

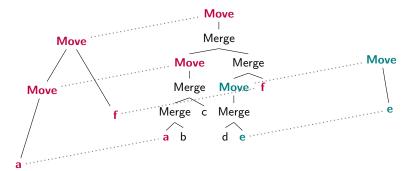
#### Constraints on Movement


Move Every head with a negative Move feature is dominated by a matching Move node.

SMC Every Move node is a closest dominating match for exactly one head.


- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not local.
- ▶ What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?




- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not local.
- ▶ What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?



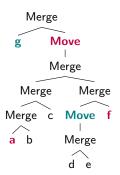
- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not local.
- ▶ What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

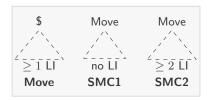


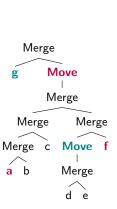
- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not local.
- ▶ What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?



### Move Constraints over Tiers

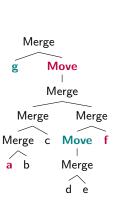

|      | Original                   |
|------|----------------------------|
| Move | Every head with a negative |
|      | Move feature is dominated  |
|      | by a matching Move node.   |
| SMC  | Every Move node is a clos- |
|      | est dominating match for   |
|      | exactly one head.          |
|      |                            |

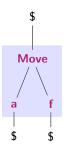

### Tier

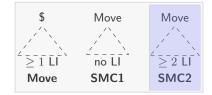

Every lexical item has a mother labeled Move.

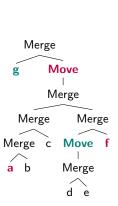
Exactly one of a Move node's **daughters** is a lexical item.


| Tree $n$ -gram Templates |       |              |  |
|--------------------------|-------|--------------|--|
| Move                     | SMC1  | SMC2         |  |
| \$                       | Move  | Move         |  |
| /^\<br>/\                |       |              |  |
| ≥ 1 LI                   | no LI | $\geq 2$ LIs |  |



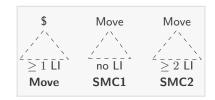



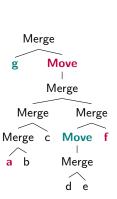



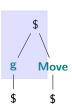


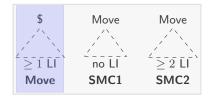


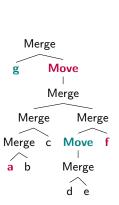



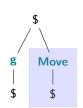


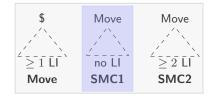



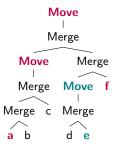



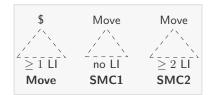


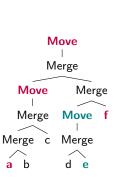





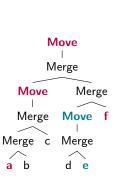



# Example of Well-Formed Derivation






## Example of Well-Formed Derivation







# Example of Well-Formed Derivation









### Remarks on Single Movement Normal Form

- Single Movement Normal Form seems unrealistic.
- ▶ But: does not rule out multiple movement steps, only says there is single feature trigger in derivation
- Intermediate landing sites can be part of structure built from the derivation tree.

#### A Conjecture on Movement Restrictions (Graf 2017a)

- Conversion of an MG into single movement normal form causes large blow-up in size of lexicon.
- ▶ Blow-up varies a lot: from 0 to hundred times the original size
- ► The more fixed the position of movers, the smaller the blow-up ⇒ island constraints as a means to limit lexical blow-up?

### Remarks on Single Movement Normal Form

- Single Movement Normal Form seems unrealistic.
- ▶ But: does not rule out multiple movement steps, only says there is single feature trigger in derivation
- Intermediate landing sites can be part of structure built from the derivation tree.

### A Conjecture on Movement Restrictions (Graf 2017a)

- Conversion of an MG into single movement normal form causes large blow-up in size of lexicon.
- ▶ Blow-up varies a lot: from 0 to hundred times the original size
- ► The more fixed the position of movers, the smaller the blow-up ⇒ island constraints as a means to limit lexical blow-up?

#### The Central Role of Derivation Trees

- Derivation trees are rarely considered in generative syntax.
   (but see Epstein et al. 1998)
- satisfy Chomsky's structural desiderata:
  - no linear order
  - ► label-free
  - extension condition
  - inclusiveness condition
- contain all information to produce phrase structure trees
  - ⇒ central data structure of Minimalist syntax

### Psychological Reality of Derivation Trees

#### Central role of derivation trees backed up by processing data:

- Derivation trees can be parsed top-down (Stabler 2013)
- Parsing models update Derivational Theory of Complexity, make correct processing predictions for
  - right < center embedding (Kobele et al. 2012)</li>
  - crossing < nested dependencies (Kobele et al. 2012)</li>
  - ► SC-RC < RC-SC (?)
  - ► SRC < ORC in English (?)</p>
  - ▶ SRC < ORC in East-Asian (?)</p>
  - quantifier scope preferences (Pasternak 2016)

### Technical Fertility of Derivation Trees

Derivation trees made it easy for MGs to accommodate the full syntactic toolbox:

- sidewards movement (Stabler 2006; Graf 2013)
- affix hopping (Graf 2012b, 2013)
- clustering movement (Gärtner and Michaelis 2010)
- tucking in (Graf 2013)
- ► ATB movement (Kobele 2008)
- copy movement (Kobele 2006)
- extraposition (Hunter and Frank 2014)
- ▶ Late Merge (Kobele 2010; Graf 2014a)
- ► Agree (Kobele 2011; Graf 2012a)
- adjunction (Fowlie 2013; Graf 2014b; Hunter 2015)
- ► TAG-style adjunction (Graf 2012c)

# Samala (Revisited)

### Sibilant Harmony in SAMALA (McMullin 2016)

1) Unbounded sibilant harmony

```
a. /k-su-ʃojin/ kʃuʃojin "I darken it" b. /k-su-k'ili-mekeken-ʃ/ kʃuk'ilimekeketʃ "I straighten up"
```

```
2) /s/\rightarrow [j] when preceding (adjacent) [t, n, i]
```

3) Long-distance agreement overrides local disagreement

```
a. /s-iʃt-iʃti-jep-us/ sististijepus "they show him" b. /s-net-us/ snetus "he does it to him'
```

# Samala (Revisited)

#### Sibilant Harmony in SAMALA (McMullin 2016)

1) Unbounded sibilant harmony

```
a. /k-su-∫ojin/ k∫u∫ojin "I darken it"
b. /k-su-k'ili-mekeken-∫/ k∫uk'ilimekeket∫ "I straighten up"
```

2)  $/s/\rightarrow$  [ʃ] when preceding (adjacent) [t, n, l]

3) Long-distance agreement overrides local disagreement

```
a. /s-iʃt-iʃti-jep-us/ sististijepus "they show him"
b. /s-net-us/ snetus "he does it to him"
```

# Samala (Revisited)

#### Sibilant Harmony in SAMALA (McMullin 2016)

1) Unbounded sibilant harmony

```
a. /k-su-\int jin/ k \int u \int jin "I darken it" b. /k-su-k'ili-mekeken-\int / k \int u k'ilimekeket\int "I straighten up"
```

2)  $/s/\rightarrow$  [ʃ] when preceding (adjacent) [t, n, l]

3) Long-distance agreement overrides local disagreement

```
a. /s-iʃt-iʃti-jep-us/ sististijepus "they show him" b. /s-net-us/ snetus "he does it to him"
```

#### SAMALA Sibilant Harmony (Revisited)

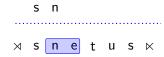
- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

snetus

#### SAMALA Sibilant Harmony (Revisited)

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

× snetus ×


#### SAMALA Sibilant Harmony (Revisited)

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

s ......s n e t u s ×

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization



- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n

× s n e t u s ×
```

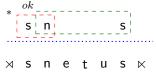
- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n

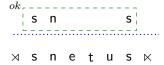
× s n e t u s ×
```

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization

```
s n s ....× s n e t u s ⋉
```

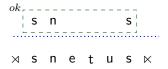

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization




- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization



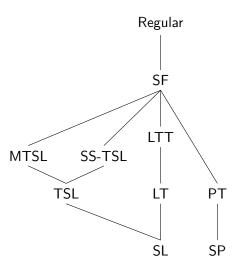
- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization



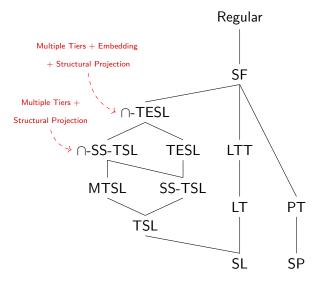

- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization



#### SAMALA Sibilant Harmony (Revisited)


- anticipatory sibilant harmony
- palatalization to avoid local restrictions
- sibilant harmony overrides palatalization




#### Grammar

$$\begin{split} \mathsf{T} &= \{ \ \sigma : \sigma \in \{\mathsf{s}, \, \mathsf{f}\} \lor \big(\sigma \in \{ \ \mathsf{n}, \, \mathsf{t}, \, \mathsf{l} \ \} \land \, \mathsf{s} \prec^+ \sigma \big) \} \\ \mathsf{S} &= \{ *\mathsf{s}\mathsf{f}, \, *\mathsf{s}\mathsf{f}, \, *\mathsf{sn}(\neg \mathsf{s}), \, *\mathsf{st}(\neg \mathsf{s}), \, *\mathsf{sl}(\neg \mathsf{s}) \} \end{split}$$

### SS -TSL: Relations to other Classes



# The TSL Neighborhood: a Plethora of Combinations

